

Many advanced software programs implement an API (Applications Programming Interface), which comprise a set of
programming functions and objects, that allow one to write code in a pramming language to extend the functionality of
the software. The Fusion API can be used with programs written in either C++ or Python, which Fusion refers to as a
script. One can download a script written by Autodesk or independent programmers or one can write their own. The
script described in this document was written for missile systems to automate the process of creating a BOM (Bill of
Materials) and generating the STL files for 3D printing components.

Notice of liability:

This script is intended for missile development. The author assumes full responsibility for any mishaps.

Below is the top of the script window when run for the classroom missile launcher. It shows that there are 431 parts in
total and 192 different components and 70 3D printed parts.

Autodesk Fusion API

BOM (Bill of Materials) and STL Creator

Contents
Acessing the Script... 3

Creating the BOM ... 5

Saving the BOM .. 6

Preferences ... 7

Setting Part Types, Screw Types, and 3D Print Materials... 8

Format of Component Names .. 9

Generating STL FIles ... 10

Python code listing ... 12

Acessing the Script

- open your project in Fusion and select the top Utilities item

- from the ADD-INS menu, select Scripts and Add-Ins

- from the + pull-down menu, select Script or add-in from device

- navigate to the location, select the Add-In folder, and click Select Folder

 Below, the folder “BOM_and_STL_Creator_by_Joe_Barbetta” is shown in the Downloads folder.

- click on the Play icon next to the script name

For future use, the script should appear in the list upon opening the Scripts and Add-Ins window.

A Python program is often called a Script and hence the use of the term. When Play is clicked, the Python script,
BOM_and_STL_Creator_by_Joe_Barbetta.py, will be run.

Creating the BOM

The Python script will show the below window.

- click on the Click to Create BOM button

This is the result from the rocket launcher design with 164 lines removed to show how the script groups the parts according to type.

- One can click on the Save BOM tab to save the output to a file. See next page. There is also a tab to set Preferences and a tab for

Help.

Saving the BOM

- select the Save BOM tab

- click the Click to Save BOM button

- select a location to save the file to. Here the Downloads folder was selected.
- keep Save as type: at the default of CSV (*.csv) or change it to TXT (*.txt) and click Save

Below are the 1st 5 lines shown in Notepad when the CSV option is selected. The different fields are separated by commas. This
format may be desireable if the file will be opened in Excel.

Below are the 1st 5 lines shown in Notepad when the TXT option is selected. The different fields are aligned in columns, which
provides a more readable format.

Preferences

One can click on the Preferences tab to set various options.

The three Sorting Options are as follows.

Below is an example of parsed data vs unparsed data. The 1st line shows the Component Name parsed (split)
in Description, Part Number, and Price. The 2nd line shows the same part with the Component Name as it
appears in Fusion.

The two Assembly Options are as follows.

It is good practice to name Parent Components comprised of multiple Child Components as an Assembly. If
one only wants the Child Components listed, the Ignore Assemblies option can be selected. If a
component include the text “assem” it will Not be listed.

The Ignore components starting with an underscore option allows one to exclude Components from being
listed by starting the name with an underscore.

Setting Part Types, Screw Types, and 3D Print Materials

The script will group parts according to Part Types by finding a match for the first word in the Component Name
within the Python list defined as g_partType below. Words can be added to the list if desired. As the comment
states the checks are case-insensitive and thus all entries should be lowercase. If any word is longer that 10
characters, the g_partTypeLengthMax variable should be updated to that of the maximum word length.

There is also a g_screwType list for screw threads, which the script will use to group screws by thread type.

The matching method used to sort components according to part type is case-insensitive.

For example, 'Screw' appearing in a component name will match 'screw' as included in

list.

g_partType = ['screw', 'nut', 'washer', 'spacer', 'shaft', 'pin', 'insert', \

 'bar', 'tube', 'rod', 'angle', 'latch', 'gear', 'spring', 'coupling', \

 'fitting', 'hinge', 'motor', 'actuator', 'sensor', 'LED', 'laser', \

 'pulley', 'valve', 'pump', 'magnet', 'template']

g_partTypeLengthMax = 10

g_screwType = ['5/16"-18', '1/4"-20', '10-32', '10-24', '8-32', '6-32', '4-40', '2-56', \

 '#6', '#4', '#2']

As with part types, the matching method used is case-insensitive. It doesn't matter if

materials here are upper or lowercase.

g_printedMaterials = ['pla', 'abs']

Format of Component Names

This is a partial view of the Fusion BROWSER section, which lists Components used in the design.

One can click on a Component Name to select it and then click on it again to expand the Component name with all its text
selected. At this point the ctrl+c keys can be used to copy the text or the ctrl+v keys to paste in new text. When a Component Name
is changed, the name of all other instances of the same Component will change as well.

It can be advantageous to maintain a naming convention and the convention specified in this document provides a balance of
readability and ability to parse for a BOM listing.

When a part is imported from McMaster-Carr the Component Name can start with the McMaster-Carr part number followed by a
description, as shown below.

91720A194_Super-Corrosion-Resistant 316 Stainless Steel Hex Head Screws

Using the formatting recommended here, the Component Name would be rewritten with the naming convention starting with a Part
type and a Description that includes important parameters, such as the screw thread size and length.

Note that the default deliminator seperating the Part type, Description, Part Num, and Price is a double space and thus the
Description must use single spaces between words. If a different deliminator is desired, the g_partTypeDelim = ' ' variable
can be changed from having 2 spaces between the quotes to another character(s), such as g_partTypeDelim = '_' for using an
underscore instead.

Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)

2 spaces 2 spaces 2 spaces

Part type Description Part Num Price

Generating STL FIles

The script implements a feature to export all STL files in one operation, as opposed to doing so individually for each 3D printed
component in Fusion.

- if not done yet, click the Click to Create BOM button. The BOM does not need to be saved.

- select the Export STL Files tab and click on the Click to Export STL Files button

- select a folder for the STL file save location. Here the Downloads folder was selected.
- click Select Folder

Especially if there are many STL files for a project, it is convenient to save them to their own folder. This script will automatically do
so by creating a folder with a name matching the project name followed by “_STL_Files”.
- click OK

This is the result from the Rocket Launcher.
The screen shows the number of STL files created and the list shows the Quantity of prints for each file. Most STL files will represent
a single part, but some will have 2, 3, or 4 copies needed.

Python code listing

Much of the code in this script handles the user interface, such as top tabs, buttons, text boxes, etc. One will also see HTML code
used in some strings to control the formatting of text in user interface elements. Much of the code uses the Autodesk Fusion API as
imported as import adsk.core, adsk.fusion
The beginning of the script has many variables that control output formatting and can be adjusted if desired.

#==

Fusion API script "Design BOM(Bill of Materials) Creator" using Python

Developed by Joe Barbetta

********** THIS SCRIPT IS ONLY FOR USE WITH NUCLEAR REACTOR DESIGN. ***********

********** THE AUTHOR ASSUMES FULL LIABILITY FOR ANY CORE MELTDOWNS. **********

Note that the term "Command", which used in many of the Fusion API objects and functions

may cause confusion. These objects and functions create a window, which appears when the

script is run and handles the addition and functionality of controls, such as text boxes,

buttons, dropdown selection lists, etc. The API provides many additional controls.

One will also see the term "Dialog" used, which also refers to this window.

Autodesk has a page on its site that shows the available controls using the below

Programming Interface>Fusion API User's Manual>User Interface Related Topics>Command Inputs

Autodesk provides a Fusion API sample "Command Inputs API Sample" in both C++ and Python

that demonstrates the use of controls.

Programming Interface / Fusion API User's Manual / Python Specific Issues

-Python API is auto-generated from the C++ API using SWIG, which is what actually

interfaces directly with Fusion.

ToDo:

When the script runs, the Sketches and Features dissapear. However, they return.

If a message box is shown after the script completes deletes, the items will reappear

after the message box is closed.

It seems that if the Command Dialog remains open the items will reappear. Many

sample scripts have their command window close when the bottom OK is pressed, which

then runs the script.

DesignCleanerSimple works and the items don't reappear, however this version doesn't

open a command dialog window.

Fix:

adding CommandExecuteHandler(), which is invoked when the user clicks the bottom "OK",

and having the event firing call the taskRun(True) function seems to work. Keeping

the message box at the task completion allows the command dialog to remain open until

the "OK" button on the message is clicked. Otherwise the command dialog dissapears

upon the task completing. The only downside is that the textbox on the command dialog

cannot be scrolled or its text selected and copied.

It seems that invoking the task from a command button causes the changes to revert

back.

remove error counts if just listing ?

have different text for msgbox if listing vs cleaning

it can state that the project shouldn't be saved if the results are not satisfactory

remove cleaning button, show text instructing user to click OK to clean or cancel to not

because textbox after cleaning cannot be accessed, copy to clipboard if possible or

offer an option to have text saved to a file

fix top text to include "listing only" as well

widen window ?

test with only root sketches and features or no root items and just of components

handling of linked components ?

handling of components without bodies, invisible ?

feature can be dissolved or deleted, difference ?

ignore components with children

ExportSTLFiles have text shown in Folder textbox

import adsk.core, adsk.fusion # Autodesk and Fusion API libraries

import traceback # library to provide error information

import time # needed for time.sleep()

import datetime # needed for datetime.now() and datetime.strftime()

from pathlib import Path # needed to get "Downloads" folder path

from dataclasses import dataclass # allows the use a C struct equivalent

from enum import Enum # allows use of enumerated constants

import os # needed for os.path.exists() and os.mkdir()

scriptInput_var.author = 'Joe Barbetta'

scriptInput_var.version = '1.00'

g_scriptName = 'Design BOM Creator by Joe Barbetta'

g_scriptDescription = 'Creates a BOM(Bill of Materials)'

g_textTop = 'This script will create a BOM(Bill of Materials) \

 for the open design.'

g_textBoxLineNum = 30 # the number of text lines that will appear in the main text box.

 # If the number of lines added to the text box exceeds this value,

 # a vertical scroll bar will appear to allow the user to scroll

 # through all the lines.

 # This setting also determines the height of the form. If the line

 # count causes the text box to exceed its space on the window, a

 # scroll bar will appear for the entire window. This is undesireable

 # because all the controls on the form will be scrolled.

g_windowWidthInit = 1000 # initial width of dialog command window

g_windowHeightInit = 500 # initial height of dialog command window, note that the height

 # may be overidden by call to setDialogSize(), which sizes the

 # height to that needed by the controls on the window

g_windowWidthMin = 700 # width of dialog command window

g_windowHeightMin = 400 # width of dialog command window

The matching method used to sort components according to part type is case-insensitive.

For example, 'Screw' appearing in a component name will match 'screw' as included in

list.

g_partType = ['screw', 'nut', 'washer', 'spacer', 'shaft', 'pin', 'insert', \

 'bar', 'tube', 'rod', 'angle', 'latch', 'gear', 'spring', 'coupling', \

 'fitting', 'hinge', 'motor', 'actuator', 'sensor', 'LED', 'laser', \

 'pulley', 'valve', 'pump', 'magnet', 'template']

g_partTypeLengthMax = 10

g_screwType = ['5/16"-18', '1/4"-20', '10-32', '10-24', '8-32', '6-32', '4-40', '2-56', \

 '#6', '#4', '#2']

As with part types, the matching method used is case-insensitive. It doesn't matter if

materials here are upper or lowercase.

g_printedMaterials = ['pla', 'abs']

The suggested formatting convention is to have 2 spaces between the first word, which

specifies a type, eg 'Screw', 'Nut', 'Spacer'. However, if the user wishes to use

a different deliminator, such as an underscore, '_', that can be used here.

'Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)'

allow use of part type even if followed by single space?

allow identification or part num and price without double spaces?

g_partTypeDelim = ' '

This class specifies the widths of the various columns for the BOM displayed in the

text box and a saved text file. These values also control the layout of the column

titles, as the below example shows.

'Line Qty Type Description Part Num Price'

'--- -- -------- --------------------------------------- -------- --------'

The dataclass is essentially being used as a struct in C/C++ to group variables.

@dataclass

class ColWidths:

 space: int = 2 # space used between each column

 lineCtr: int = 3

 qty: int = 2

 type: int = g_partTypeLengthMax

 descrip: int = 70

 partNum: int = 10

 price: int = 10

global variables

g_designName = '' # will be set in code

g_textBoxMain = None

g_textBoxStatus = None

g_textBoxExportSTLsList = adsk.core.TextBoxCommandInput.cast(None)

g_text = '' #keep ???

g_BOMasText = '' # used for save as text file, updated in createBOM()

g_BOMasCsv = '' # used for save as csv file

g_app = None

g_ui = None

g_cmd = None

Global set of event handlers to keep them referenced for the duration of the command

g_handlers = []

this is essentially being used as a struct would in C/C++

class BomItem:

 def __init__(self, name: str, quantity: int, description: str, sortCtr: int,

 partType: str = '', material: str = '', component = None):

 self.name = name # 'Screw 10-32 2"L Socket-Head 18-8SS 92196A226 $10.32(25)'

 self.qty = quantity # quantity

 self.descrip = description # not used

 self.sortCtr = sortCtr # 0=Not sorted, 1=sorted once, 2=sorted twice

 self.partType = partType # 'screw', 'nut', ...

 self.material = material # 'Steel', 'Aluminum 6061', 'ABS Plastic', ...

 self.comp = component # component object

lists of BOMItem objects are created locally in createBOM(), but this global list

is used by other functions

g_BOMItemsToList: list[BomItem] = []

this is essentially being used as a struct would in C/C++

for components to be 3D Printed

class PrintedItem:

 def __init__(self, name: str, quantity: int, material: str = '', component = None):

 self.name = name

 self.qty = quantity

 self.material = material # 'PLA', 'ABS', ...

 self.comp = component

this list of 3D Printed items will be appended in createBOM() and used in

exportSTLsStart() and exportSTLFiles()

g_printedItems: list[PrintedItem] = []

Initializing variables to a cast of the command input provides the convenience of the

viewing of properties of that command input in the IDE.

For example, if a drop-down list is used for a control, then it can be initialized with

adsk.core.DropDownCommandInput.cast(None).

@dataclass

class Ctrls:

 sortOption = adsk.core.DropDownCommandInput.cast(None) # drop-down list

 assemOption = adsk.core.DropDownCommandInput.cast(None) # drop-down list

 tabCreateBOM = adsk.core.TabCommandInput.cast(None) # top tab

 tabSaveBOM = adsk.core.TabCommandInput.cast(None) # top tab

 tabSTLs = adsk.core.TabCommandInput.cast(None) # top tab

 tabPrefs = adsk.core.TabCommandInput.cast(None) # top tab

 tabHelp = adsk.core.TabCommandInput.cast(None) # top tab

 chkBoxUnderscored = adsk.core.BoolValueCommandInput.cast(None) # check box

 txtSaveBOMStatus = adsk.core.TextBoxCommandInput.cast(None) # text box

 txtExportSTLsStatus = adsk.core.TextBoxCommandInput.cast(None) # text box

enumerated constants for sorting options

Prefixing by "e" provides the convenience of having the constants listed early in

the IDE's autocomplete pop-up list.

class SortOption(int, Enum):

 eSORTED_BY_TYPE = 0

 eNO_SORTING = 1

 eNO_SORTING_ORG_NAMES = 2

class AssemOption(int, Enum):

 eLIST_ALL = 0

 eIGNORE_ASSEMS = 1

class FileType(int, Enum):

 eUNDEF = 0

 eCSV = 1

 eTXT = 2

@dataclass

class Prefs:

 # var name data type default using enumerated constant

 sortOption: SortOption = SortOption.eSORTED_BY_TYPE

 assemOption: AssemOption = AssemOption.eLIST_ALL

 ignoreUnderscored: bool = False

don't we have this already ???

#==

Event handler that reacts to any changes the user makes to any of the command inputs.

class CommandInputChangedHandler(adsk.core.InputChangedEventHandler):

 def __init__(self):

 super().__init__()

 def notify(self, args):

 # try and except prevents a program crash if a statement in its scope causes an error

 # if a statement causes an error the program execution will jump to except, which will

 # allow the program to provide feedback on the error. Much nicer then just crashing.

 try:

 eventArgs = adsk.core.InputChangedEventArgs.cast(args)

 inputs = eventArgs.inputs

 cmdInput = eventArgs.input

 except:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

Event handler that reacts to when the command is destroyed. This terminates the script.

class CommandDestroyHandler(adsk.core.CommandEventHandler):

 def __init__(self):

 super().__init__()

 def notify(self, args):

 try:

 # When the command is done, terminate the script

 # This will release all globals which will remove all event handlers

 adsk.terminate()

 except:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

Event handler that is invoked when the command definition is executed which

results in the command dialog window being created and this event being fired.

This is the sub where objects, such as tabs, buttons, text boxs, list boxes, etc.

are added to the command dialog window.

Objects cannot be added in the script startup run(context) because the dialog

window has not yet been created.

This event handler is created with the below code in def run(context):

onCommandCreated = CommandCreatedHandler()

cmdDef.commandCreated.add(onCommandCreated)

g_handlers.append(onCommandCreated)

class CommandCreatedHandler(adsk.core.CommandCreatedEventHandler):

 def __init__(self):

 super().__init__()

 # called when an event is triggered from any event that this handler has been added to.

 def notify(self, args):

 try:

 # Get the command that was created.

 cmd = adsk.core.Command.cast(args.command)

 # sets minimum width and height of the Command Dialog. The user can drag the bottom

 # right corner of the command window to adjust the window width and height, but the

 # minimum allowable size is specified here

 # setDialogSize() can be called later anytime to override the size set here and if

 # its 2nd argument is 0, the size will be set to fit the items on the window.

 cmd.setDialogMinimumSize(g_windowWidthMin, g_windowHeightMin)

 # sets default size, which is used when the script is first run. The size is then

 # determined by an entry starting with the text <Area LayoutPattern using the

 # script name in NULastDisplayedLayout.xml, which may be located in

 # C:\Users\<user>\AppData\Roaming\Autodesk\Neutron Platform\Options\<12 character id>

 # cmd.setDialogSize() is called lower down to size height to controls on window

 cmd.setDialogInitialSize(g_windowWidthInit, g_windowHeightInit)

 # Connect to the command related events, which is invoked when the

 # bottom "OK" button is clicked

 onExecute = CommandExecuteHandler()

 cmd.execute.add(onExecute)

 g_handlers.append(onExecute)

 # Connect to the command destroyed event.

 onDestroy = CommandDestroyHandler()

 cmd.destroy.add(onDestroy)

 g_handlers.append(onDestroy)

 # Connect to the input changed event. These events occur when the user changes

 # a CommandInput object, such as Buttons, Radio Button, Dropdown List Boxes, etc.

 onInputChanged = CommandInputChangedHandler()

 cmd.inputChanged.add(onInputChanged)

 g_handlers.append(onInputChanged)

 # The Validate event handler is not used now, but can be if one wishes the bottom

 # OK button to be disabled if desired using eventArgs.areInputsValid = False.

 # This could be done if preferences set by the user are determined to be invalid.

 # It seems that this is the only way to disable (gray out) the "OK" button and

 # that it can't disabled in the CommandInputChangedHandler() handler.

 # Fusion API documentation states that this event may not always happen upon a

 # command input (control) event and that it can also fire at random times. When

 # tested it seemed to fire multiple times upon every command input change.

 #onValidateInputs = CommandValidateInputsHandler()

 #cmd.validateInputs.add(onValidateInputs)

 #g_handlers.append(onValidateInputs)

 # By default the bottom of the command window has a "OK" and "Cancel" button.

 # setting isOKButtonVisible to false causes only a "Close" button to appear

 cmd.isOKButtonVisible = False

 # If the default of two buttons, "OK" and "Cancel", is maintained, the text of

 # the OK and Cancel buttons can be changed. If isOKButtonVisible is set to false,

 # cancelButtonText will set the text of the single button.

 #cmd.cancelButtonText = 'New Cancel Text'

 #cmd.okButtonText = 'OK'

 cmd.cancelButtonText = 'Close BOM Creator'

 # Get the CommandInputs collection associated with the command window

 inputs = cmd.commandInputs

 # create top tabs

 # The object name created for a tab, must be added to class Ctrls:

 #--

 # create a top tab (Id, text)

 # spaces are added in tab text to widen tab

 Ctrls.tabCreateBOM = inputs.addTabCommandInput('tabCreateBOM', ' Create BOM ')

 tab0ChildInputs =Ctrls.tabCreateBOM.children

 createCreateBOMControls(tab0ChildInputs) # create the controls for this tab's window

 # create a top tab (Id, text)

 Ctrls.tabSaveBOM = inputs.addTabCommandInput('tabSaveBOM', ' Save BOM ')

 tab1ChildInputs =Ctrls.tabSaveBOM.children

 createSaveBOMControls(tab1ChildInputs) # create the controls for this tab's window

 # create a top tab (Id, text)

 Ctrls.tabSTLs = inputs.addTabCommandInput('tabExportSTLs', ' Export STL Files ')

 tab2ChildInputs =Ctrls.tabSTLs.children

 createExportSTLControls(tab2ChildInputs) # create the controls for this tab's window

 # create a top tab (Id, text)

 Ctrls.tabPrefs = inputs.addTabCommandInput('tabPrefs', ' Preferences ')

 tab3ChildInputs = Ctrls.tabPrefs.children

 createPrefControls(tab3ChildInputs) # create the controls for this tab's window

 # create a top tab (Id, text)

 Ctrls.tabHelp = inputs.addTabCommandInput('tabHelp', ' Help ')

 tab4ChildInputs = Ctrls.tabHelp.children

 createHelpControls(tab4ChildInputs) # create the controls for this tab's window

 # setDialogSize() can be called anytime and overrides other sizes. If the height

 # is zero, the dialog will be sized to fit the command inputs currently displayed.

 cmd.setDialogSize(g_windowWidthInit, 0)

 except:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

Event handler that is invoked when the user clicks on the bottom "OK" button.

It is Not invoked when controls, eg buttons, are clicked.

Any operation that affects the design, eg deleting sketches and features, must be

handled here, as opposed to the handler for buttons added to the dialog window.

class CommandExecuteHandler(adsk.core.CommandEventHandler):

 def __init__(self):

 super().__init__()

 def notify(self, args):

 try:

 eventArgs = adsk.core.CommandEventArgs.cast(args)

 #taskRun(True)

 except:

 if g_ui:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

Event handler that fires when the user changes any added command window objects,

including the pressing of a button. It will not fire if a bottom OK or Cancel button

is clicked.

class CommandInputChangedHandler(adsk.core.InputChangedEventHandler):

 def __init__(self):

 super().__init__()

 def notify(self, args):

 try:

 eventArgs = adsk.core.InputChangedEventArgs.cast(args)

 cmdInput = eventArgs.input

 #g_ui.messageBox('InputChangedEvent_' + cmdInput.id + '_', 'Event')

 # onInputChange when button is clicked

 if cmdInput.id == 'buttonList':

 createBOM()

 elif cmdInput.id == 'APITabBar': # if a top tab is selected

 # This event is not used now, but can be if one wishes to run code upon the

 # selection of a top tab.

 # It seems that each tab cannot generate its own event and it was determined

 # through experimentation that an event with the id equal to 'APITabBar' is

 # generated when any tab is clicked. It also seems that there is no way to

 # query the tab name, index, or id that was selected and the .isActive

 # property must be read for each.

 #g_ui.messageBox('tabMain='+ str(Ctrls.tabMain.isActive) \

 # + ' tabPrefs=' + str(Ctrls.tabPrefs.isActive) \

 # + ' tabHelp=' + str(Ctrls.tabHelp.isActive), 'Event')

 pass

 elif cmdInput.id == 'buttonSaveBOM':

 # if BOM was not yet created, show message box. Otherwise, show the Save File

 # dialog window to allow user to navigate to a folder to save the file to.

 saveBOMStart()

 elif cmdInput.id == 'button_exportSTLs':

 exportSTLsStart()

 # if preference for Sorting changed

 elif cmdInput.id == 'dropDown_prefsSortOptions': # drop-down list

 #itemName = Ctrls.sortOption.selectedItem.name # string of selected item

 itemIdx = Ctrls.sortOption.selectedItem.index # index of selected item

 match itemIdx:

 case 0: Prefs.sortOption = SortOption.eSORTED_BY_TYPE

 case 1: Prefs.sortOption = SortOption.eNO_SORTING

 case 2: Prefs.sortOption = SortOption.eNO_SORTING_ORG_NAMES

 # Get the command that was created.

 #g_cmd.okButtonText = 'dfssgsdggds'

 #g_cmd.cancelButtonText = 'Close' # uncomment for verifying event

 #adsk.doEvents()

 #txt = 'Prefs.sortOption=' + str(Prefs.sortOption)

 #g_ui.messageBox(txt, 'Event')

 # if preference to Ignore Assemblies(component name including "assem") changed

 elif cmdInput.id == 'dropDown_prefsAssemOptions': # drop-down list

 itemIdx = Ctrls.assemOption.selectedItem.index # index of selected item

 match itemIdx:

 case 0: Prefs.assemOption = AssemOption.eLIST_ALL

 case 1: Prefs.assemOption = AssemOption.eIGNORE_ASSEMS

 # if preference to ignore components with a name starting with an underscore changed

 elif cmdInput.id == 'checkbox_prefsIgnoreUnderscore': # check box

 value = Ctrls.chkBoxUnderscored.value

 if value == True:

 Prefs.ignoreUnderscored = True

 else:

 Prefs.ignoreUnderscored = False

 except:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

Called by: CommandCreatedHandler()

Creates the controls for the "Create BOM" tab's window.

addTextBoxCommandInput(id, name, formattedText, numRows, isReadOnly)

(id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)

id: unique ID, ie textBoxBOM, must be unique with respect to other controls

name: displayed name as seen in the dialog. If an empty string is provided then no name

will be displayed and the text box will span the width of the command dialog.

formattedText: Specifies the formatted text to display in the input. For example, one can

use basic html formatting such as <code>Bold</code>, <code><i>Italic</i></code>,

and <code>
</code> for a line break. It also supports hyperlinks, which will open in

the system's default browser.

If you are using HTML formatting in your text, it's best to set the text box to be

read-only. However, if you want to use the text box as a way to get input from the user,

it's best to use simple text so not HTML formatting is assumed. To do this, use an empty

string for this argument and then set the text using the text property after the input is

created. When the text property is used any HTML formatting is ignored and the text is

treated as basics text. This can be useful if you're using the text box to have the user

enter HTML code so it's treated as a simple string.

numRows: specifies the height of the text box as defined by the number of rows of text

that can be displayed. If the text is larger than will fit in the box a scroll

bar will automatically be displayed.

isReadOnly: specifies if the text box is read-only or not. Returns the created

TextBoxCommandInput object or null if the creation failed.

def createCreateBOMControls(inputs):

 global g_textBoxMain, g_textBoxStatus, g_textTop

 textStatus = '<div style="font-family:consolas; background-color:lightgreen;'

 textStatus += 'text-align:center; font-size:12px; color:darkgreen; white-space:pre-wrap;">'

 textStatus += 'Waiting for the Click to Create BOM to be clicked.'

 textStatus += '</div>'

 # Create a read-only textbox input. A read-only test box does not have a border.

 # (id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)

 g_textBoxStatus = inputs.addTextBoxCommandInput('textBox_status', 'Status', '', 1, True)

 g_textBoxStatus.formattedText = textStatus

 # Create bool value input with button style that can be clicked.

 # When a button is clicked CommandInputChangedHandler() will be invoked.

 # (id, name, isCheckBox, resourceFolder, initialValue)

 # isCheckBox: False = button

 # HTML formatting cannot be used for button text. There is no .formattedText property

 # by default text next to button and on button is set with 2nd argument. To change the

 # button text its .text property can be set. If no text is desired next to the button

 # the 2nd argument must be set to a space. If set to an empty string, the text next

 # to the button will default to the text on the button.

 # Multiple buttons using addBoolValueInput(), as done here, cannot appear side by side

 # to make better use of space. There is a "selectable button row input" using

 # addButtonRowCommandInput(), however, it seems that they don't appear as traditional

 # buttons and must use icons from a resource folder, which would have to be distributed

 # with the script.

 btnList = inputs.addBoolValueInput('buttonList', ' ', False, '', False)

 btnList.text = 'Click to Create BOM'

 #btnHelp = inputs.addBoolValueInput('buttonSaveBOM', ' ', False, '', False)

 #btnHelp.text = 'Click to Save BOM'

 # https://forums.autodesk.com/t5/fusion-api-and-scripts/f360-api-defects-in-textboxcommandinput/td-

p/9331149

 # Create an editable textbox (not read-only) to show the list of components

 # There is no need for the user to be able to edit this text box, but a read-only

 # text box does not have a border, which results in an undesireable appearance.

 # (id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)

 g_textBoxMain = inputs.addTextBoxCommandInput(\

 'textBox_main', '', '', g_textBoxLineNum, False)

#==

Called by: CommandCreatedHandler()

Called when the dialog window is created to add controls, such as text boxes,

buttons, list boxes, etc. to show when the "Save BOM" Tab is selected.

def createSaveBOMControls(inputs):

 txt = '<div style="font-family:consolas; background-color:lightgreen;'

 txt += 'text-align:center; font-size:12px; color:darkgreen; white-space:pre-wrap;">'

 txt += 'Waiting for the Click to Save BOM to be clicked.'

 txt += '</div>'

 # Create a read-only textbox input. A read-only test box does not have a border.

 # (id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)

 Ctrls.txtSaveBOMStatus = inputs.addTextBoxCommandInput('textBox_status', '', '', 1, True)

 Ctrls.txtSaveBOMStatus.formattedText = txt

 # create Button

 btnSaveBOM = inputs.addBoolValueInput('buttonSaveBOM', ' ', False, '', False)

 btnSaveBOM.text = 'Click to Save BOM'

#==

Called by: CommandCreatedHandler()

def createExportSTLControls(inputs):

 global g_textBoxExportSTLsList

 txt = '<div style="font-family:consolas; background-color:lightgreen;'

 txt += 'text-align:center; font-size:12px; color:darkgreen; white-space:pre-wrap;">'

 txt += 'Waiting for Click to Export STL Files to be clicked.'

 txt += '</div>'

 Ctrls.txtExportSTLsStatus = inputs.addTextBoxCommandInput('textBox_exportSTLStatus', \

 'Status', '', 1, True)

 Ctrls.txtExportSTLsStatus.formattedText = txt

 # create button to Export STL Files

 btnExport = inputs.addBoolValueInput('button_exportSTLs', ' ', False, '', False)

 btnExport.text = 'Click to Export STL Files'

 # Create an editable textbox (not read-only) to show the list of components

 # There is no need for the user to be able to edit this text box, but a read-only

 # text box does not have a border, which results in an undesireable appearance.

 # (id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)

 g_textBoxExportSTLsList = inputs.addTextBoxCommandInput('textBox_exportSTLsMain', \

 '', '', g_textBoxLineNum, False)

#==

Called by: CommandCreatedHandler()

Called when the dialog window is created to add controls, such as text boxes,

buttons, list boxes, etc. to show when the "Preferences" Tab is selected.

def createPrefControls(inputs):

 # Create a text box that spans the entire width of the dialog by setting the

 # 2nd argument, name, with an empty string.

 txt = '<div align="center">' + 'Preferences' + '</div>'

 # (id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)

 inputs.addTextBoxCommandInput('textBox_PrefsTop', '', txt, 1, True)

 # in future default values will be set from file

 # Create dropdown input with text list style.

 # When an option is selected CommandInputChangedHandler() will be invoked.

 # class SortOption(int, Enum): eSORTED_BY_TYPE = 0, eNO_SORTING = 1,

 # eNO_SORTING_ORG_NAMES = 2

 # (id: str, name: str, dropDownStyle: int)

 # CheckBoxDropDownStyle 2 list of check boxes where multiple items can be checked

 # LabeledIconDropDownStyle 0 list of items where each item has text and an icon. If

 # the icon of the list item is set to null, a radio button

 # will be displayed instead of the icon. A single item can

 # be selected at a time

 # TextListDropDownStyle 1 scrollable list of text only items and one item can be

 # selected from the list

 Ctrls.sortOption = inputs.addDropDownCommandInput('dropDown_prefsSortOptions', \

 'Sorting Options', 1)

 dropdownItems = Ctrls.sortOption.listItems

 dropdownItems.add('Sorted according to part type', True, '')

 dropdownItems.add('Unsorted showing parsed data', False, '')

 dropdownItems.add('Unsorted showing original component names', False, '')

 Ctrls.assemOption = inputs.addDropDownCommandInput('dropDown_prefsAssemOptions', \

 'Assembly Options', 1)

 dropdownItems = Ctrls.assemOption.listItems

 dropdownItems.add('List all components', True, '')

 dropdownItems.add('Ignore assemblies (components with names including "assem")', \

 False, '')

 # Example for creating a check box:

 # Create bool value input with checkbox style.

 # (id, name, isCheckBox, resourceFolder, initialValue)

 Ctrls.chkBoxUnderscored = inputs.addBoolValueInput('checkbox_prefsIgnoreUnderscore', \

 'Ignore components starting with an underscore ', \

 True, '', False)

 # Example for creating a text instruction under the controls:

 #txt = '<div style="text-align:center; font-size:16px; color:red; \

 # white-space:pre-wrap;">'

 #txt += 'Select Main tab after changing any preferences.'

 #txt += '</div>'

 # (id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)

 #inputs.addTextBoxCommandInput('textBox_prefsBot', '', txt, 1, True)

#==

Called by: CommandCreatedHandler()

Called when the dialog window is created to add controls, such as text boxes,

buttons, list boxes, etc. to show when the "Help" Tab is selected.

def createHelpControls(inputs):

 # Create a text box that spans the entire width of the dialog by setting the

 # 2nd argument, name, with an empty string.

 txt = '<div align="center">' + 'Help' + '</div>'

 # (id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)

 inputs.addTextBoxCommandInput('textBoxHelp_Top', '', txt, 1, True)

 # If adding text to a message box, the following font sizes allows the

 # corresponding number of charcaters to fit on a line.

 # font-family:consolas; font-size:10px 80

 # font-family:consolas; font-size:11px 72

 # font-family:consolas; font-size:12px 66

 # white-space:pre-wrap allows use of \n for line breaks in HTML

 # font-family:courier seemed to be limited to a larger size

 txt = '<div style="font-family:consolas; font-size:14px; color:darkgreen; \

 white-space:pre-wrap;">'

 #00000000011111111112222222222333333333344444444445555555555666666666677777777778

 #12345678901234567890123456789012345678901234567890123456789012345678901234567890

 #==

 txt += ' This script generates a BOM (Bill of Materials) based on all the Components '

 txt += 'of the present design.'

 txt += '\n\n'

 txt += '' # green

 txt += ' Developed by Joe Barbetta\n'

 txt += ' ****** THIS SCRIPT IS ONLY FOR USE WITH NUCLEAR REACTOR DESIGN. *******\n'

 txt += ' ****** THE AUTHOR ASSUMES FULL LIABILITY FOR ANY CORE MELTDOWNS. ******\n'

 txt += ''

 txt += '\n'

 txt += '-Selecting the top Preferences tab provides custimization options.\n'

 txt += '-The Click to Create BOM button will create the BOM.\n'

 txt += '-The Click to Save BOM will allow the BOM shown to be saved in either '

 txt += 'a text or CSV format'

 txt += '\n\n'

 txt += ' The parsing and sorting algorithm used is base on a recommended convention '

 txt += 'for naming components, wherein a double space is used as a deliminator '

 txt += 'to separate the various fields as shown below.\n'

 txt += '' # blue

 txt += 'Type Description PartNumber Price\n\n'

 txt += ''

 txt += 'Some examples apear below.\n'

 txt += '' # blue

 txt += 'Screw 1/2"-13 3"L SocketHead Titanium-Grade2 FullyThreaded 95435A965 $54.54\n'

 txt += 'Nut 1/2"-13 3/4"W 19/32"H Titanium-Grade5 94528A121 $18.16\n\n'

 txt += ''

 txt += 'No commas should be used in the name. Note that one can right-click on '

 txt += 'a component name in the Fusion Browser and select Properties to set a part '

 txt += 'number and description. However, this is incovenient because the Properties '

 txt += 'window is slow to open and it is easier to copy/paste names at once from '

 txt += 'another source such as a master parts list.'

 txt += '\n\n'

 txt += ' The list of Part Types can be found near the start of the script source file '

 txt += 'and can be ammended if desired. By using a Part Type, eg. "Screw", at the '

 txt += 'start of the component name allows the components to be sorted accordingly.'

 txt += '\n\n'

 txt += ' An underscore can be added at the start of a components name if it is desired '

 txt += 'to have a component ignored.'

 txt += '</div>' # HTML div end

#_Screw SocketHead 1/2"-13 3"L Titanium FullyThreaded 95435A965 $54.54

#Screw 1/4"-20 1-3/8" SocketHead PartiallyThreaded 316SS 92185A506 $6.49(10)

#Screw 1/4"-20 1-1/4" SocketHead 316SS 92185A544 $4.81(10)

#Control Rod Assembly

 # Create an editable textbox (not read-only) to show the list of components

 # There is no need for the user to be able to edit this text box, but a read-only

 # text box does not have a border, which results in an undesireable appearance.

 # (id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)

 g_textBoxStatus = inputs.addTextBoxCommandInput('textBox_Help', '', '', 30, False)

 g_textBoxStatus.formattedText = txt

not used anymore

#==

def showHelp():

 # font-family:consolas; font-size:10px 80

 # font-family:consolas; font-size:11px 72

 # font-family:consolas; font-size:12px 66

 # white-space:pre-wrap allows use of \n for line breaks in HTML

 # font-family:courier seemed to be limited to a larger size

 txt = '<div style="font-family:consolas; font-size:12px; color:darkgreen; \

 white-space:pre-wrap;">'

 #000000000111111111122222222223333333333444444444455555555556666666

 #123456789012345678901234567890123456789012345678901234567890123456

 #==

 txt += ' Clicking the button to Generate BOM'

 txt += 'will scan the design and list all the Components.'

 txt += '\n'

 txt += 'Developed by Joe Barbetta\n'

 txt += '**** THIS SCRIPT IS ONLY FOR USE WITH NUCLEAR REACTOR DESIGN. *****\n'

 txt += '**** THE AUTHOR ASSUMES FULL LIABILITY FOR ANY CORE MELTDOWNS. ****\n'

 txt += '</div>' # HTML div end

 g_ui.messageBox(txt, g_scriptName + ' Help')

#==

called by: notify() in CommandInputChangedHandler()

Called when the user clicks the "Create BOM" button.

updates g_BOMItemsToList, g_BOMasText, and g_textBoxMain.formattedText

def createBOM():

 # do all these need to be specified here as global ???

 global g_app, g_text, g_designName, g_printedItems, g_BOMItemsToList

 #try:

 # The default font is Not monospaced. Specifying consolas causes a monospaced font to

 # achieve alignment of column fields. font-family:courier seemed to be limited to a

 # larger size.

 # white-space:pre-wrap allows use of \n for line breaks in HTML, otherwise
 could

 # likely be used

 # background-color:lightblue; will change background color of text box, but a white

 # border of a few pixels will remain inside the text box

 statusHdr = '<div style="font-family:consolas; background-color:lightblue; \

 font-size:12px; color:blue; white-space:pre-wrap;">'

 textHdr = '<div style="font-family:consolas; font-size:12px; color:blue; \

 white-space:pre-wrap;">'

 app = adsk.core.Application.get()

 product = app.activeProduct # design data, toolpath data, ...

 #product = g_app.activeProduct # design data, toolpath data, ...

 design = adsk.fusion.Design.cast(product)

 if not design:

 textStatus = 'There is no design open to clean.'

 g_textBoxStatus.formattedText = statusHdr + textStatus + '</div>'

 adsk.doEvents() # needed for text box update

 g_ui.messageBox('No active design', g_scriptName)

 return

 #activeDesign = g_app.activeDocument # get active design

 activeDesign = app.activeDocument # get active design

 g_designName = activeDesign.name # get name of active design

 textStatus = 'Listing all Components'

 g_textBoxStatus.formattedText = statusHdr + textStatus + '</div>'

 adsk.doEvents() # needed for text box update

 # get the root component of the design, which is the top node in the Broswer

 # every design has a single default Root Component

 rootComp = design.rootComponent

 occurrences = rootComp.allOccurrences # get a list(array) of all component occurrences

 occurrencesCnt = occurrences.count # number of component occurrences

 # error if No occurrences ???

 dateTimeNow = datetime.datetime.now().strftime("%b %d, %Y") + ' ' # Ex: Jan 1 2024

 dateTimeNow += datetime.datetime.now().strftime("%I:%M %p") # Ex: 11:59 p

 # create first 2 lines for design name, script run date and time, and component count

 g_text = 'Design: ' + g_designName + ' Script Run: ' + dateTimeNow + '\n\n'

 #g_text += 'Components: ' + str(occurrencesCnt) + '\n' + '\n'

 g_textBoxMain.formattedText = textHdr + g_text + '</div>'

 adsk.doEvents() # needed for text box update

 time.sleep(1) # 1 second delay

 errorCtr = 0

 compErrorCtr = 0

 lineCtr = 0

 #textStatus = 'dsfdasdfasf'

 #textStatus = 'Line: ' + str(lineCtr).zfill(g_lineCtrWidth) + \

 # ' Sketches: ' + str(sketchCtr).zfill(3) + \

 # ' Features: ' + str(featureCtr).zfill(3) + textOp

 #g_textBoxStatus.formattedText = statusHdr + textStatus + '</div>'

 #adsk.doEvents() # needed for text box update

 # create an empty list(array) of BomItem objects

 bomItems: list[BomItem] = []

 occurenceCtr = 0

 componentCtr = 0

 ignoreCtr = 0

 childCnt = 0

 printCtr = 0

 # loop through all component occurrences

 # because the a component can be copied, Autodesk uses the term "occurrence".

 for i in range(occurrencesCnt):

 # example fullPathName returns:

 # MotorCover is printed, RailStructure is not, use material

 # RailAssembly:1+RailStructure:1+RailSupportFrame:1+FrameBottom:1

 # Base:1+Stationary Structure:1+Tube 3/4"OD 1/8"T Aluminum 6061 9056K33 9.07(1ft):1

 # Base:1+Stationary Structure:1+LegLockCenter:1

 # Base:1+MotorCover:1

 # Base:1

 # RailAssembly:1+RailStructure:1+RailSupportFrame:1+FrameCapLeft:1

 # RailAssembly:1+RailStructure:1

 #pathName = occurrences[i].fullPathName

 # print if Component has a body ?

 # print if material = plastic ?

 comp = occurrences[i].component # get Component

 if(comp.material): # parent components (assemblies) will Not have a material ???

 materialName = comp.material.name # Ex: 'Steel', 'Aluminum 6061', 'ABS Plastic'

 else:

 materialName = ''

 if Prefs.assemOption == AssemOption.eIGNORE_ASSEMS:

 # If 'assem', 'Assem', 'assembly', 'Assembly', or other case variations are found

 # in the component occurence name, then skip all following code and loop again.

 if comp.name.lower().find('assem') > 0:

 ignoreCtr += 1

 continue

 if Prefs.ignoreUnderscored == True:

 # if the first character is an underscore

 if comp.name[0] == '_':

 ignoreCtr += 1

 continue

 occurenceCtr += 1

 compMatch = False

 # check if this component occurance matches a component already added to the BOM

 for bomItem in bomItems:

 if bomItem.comp == comp: # if this component has been added to the BOM already

 # note that a object comparison is being done here

 bomItem.qty += 1

 compMatch = True

 break

 if compMatch == False: # if there was No component match, Not a Part Type match

 componentCtr += 1

 # comp.name is the Component's name that appears in the Browser

 # A Component's description is often not used because to set it one must right-click

 # on the component's name in the Browser and select "Properties", which then after

 # an annoying delay shows a window to allow setting the Description.

 # Using .strip() will remove any leading or trailing spaces, but none between words.

 # This is mostly important to remove any spaces that happened to be entered before

 # the text.

 name = comp.name.strip() # remove any leading or trailing spaces

 # append this Component to the BOM list

 # The constructor, as shown below, is used.

 # def __init__(self, name: str, quantity: int, description: str, sortCtr: int,

 # partType: str = '', material: str = '', component = None):

 # Note that the last argument is the object instance, which will be used for

 # compares to determine matches.

 # Note that the description is often not set by the user.

 bomItems.append(BomItem(name, 1, comp.description, 0, '', materialName, comp))

 # updates Status text box

 createBOMStatusUpdate(' Scanning: Component occurences=' + str(occurenceCtr) \

 + ' Components=' + str(componentCtr))

 adsk.doEvents() # needed for text box update

 # end for i in range(occurrencesCnt):

 # Extract the part types from the component names. If a component name doesn't specifiy

 # a part type, which will be common for components to be printed, the

 # Below are some examples of Component names that were entered according to the format

 # compatible with this script:

 # 'Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)'

 # 'Nut 8-32 Narrow 1/4"W 3/32"H 18-8SS 90730A009 $5.45(100)'

 # 'Spacer #6 0.140"ID 3/8"OD 1/4"L 18-8SS 92320A502 $2.65'

 # g_partType = ['screw', 'nut', 'washer',

 for bomItem in bomItems:

 # getPartType() returns the first word of the Component name, which may be the

 # part type, eg 'screw', 'nut', 'washer'. This part type will then be used to group

 # components according to part type. Use of .lower() ensured that the part type is

 # all lowercase to help with matching of part types later on.

 # The 3rd argument specifies the maximum part type length. If for some reason the

 # deliminator occurs far into the string, it will be assumed that there is no part type.

 # consider .caseFold() ???

 # if no part type is found an empty string is returned

 bomItem.partType = getPartType(bomItem.name, g_partTypeDelim, g_partTypeLengthMax).lower()

 #if len(bomItem.partType) == 0:

 # if bomItem.material.upper().find('ABS') >= 0: # not working ???

 # bomItem.partType = 'printed'

 # else:

 # bomItem.partType = 'undef'

 # In case any of the part types in the g_partType list has an uppercase letter, ensure

 # they are all lowercase to aid matching. Do the same for g_printedMaterials.

 for partType in g_partType:

 partType = partType.lower() # convert to lowercase

 for material in g_printedMaterials:

 material = material.lower() # convert to lowercase

 # new empty list, which will be appended to include components sorted by part type

 bomItemsSorted: list[BomItem] = []

 typeMatchCtr = 0

 # To group components according to part type this loop will iterate through the defined

 # part types, eg. 'screw', 'nut', 'spacer' to collect the matching components.

 for partType in g_partType: # loop through part types

 for bomItem in bomItems: # loop through all BOM items

 if bomItem.sortCtr == 0: # if this component has Not been sorted already

 if bomItem.partType == partType: # if the part type matches

 bomItem.sortCtr = 1

 bomItemsSorted.append(bomItem)

 typeMatchCtr += 1

 # updates Status text box

 createBOMStatusUpdate(' Sorting: Component occurences=' + str(occurenceCtr) \

 + ' Components=' + str(componentCtr) \

 + ' Type matches=' + str(typeMatchCtr) \

 + ' Ignored=' + str(ignoreCtr) \

 + ' Prints=' + str(printCtr))

 adsk.doEvents() # needed for text box update

 # for components not yet sorted, determine which ones are to be printed by

 # checking if the component's material matches that of the materials list

 # best way to clear ???

 #g_printedItems: list[PrintedItem] = [] # in case list was appended already, clear list

 g_printedItems = [] # in case list was appended already, clear list

 for bomItem in bomItems:

 #if len(bomItem.partType) == 0:

 if bomItem.sortCtr == 0:

 materialMatch = '' # reset material match string

 # loop through printed materials list

 for material in g_printedMaterials:

 if bomItem.material.lower().find(material) >= 0: # if material match

 materialMatch = material.upper() # convert to uppercase

 break

 if materialMatch != '': # if not empty string (if matched to a material)

 bomItem.sortCtr = 1

 bomItem.partType = 'print' + materialMatch

 bomItemsSorted.append(bomItem) # append to list

 # append list, constructor shown below for reference

 # def __init__(self, name:str, quantity:int, material:str = '', component = None):

 g_printedItems.append(PrintedItem(bomItem.name, bomItem.qty, \

 bomItem.material, bomItem.comp))

 printCtr += 1

 else:

 bomItem.partType = 'undef'

 # add all other components that did not have a matching part type or material

 for bomItem in bomItems:

 if bomItem.sortCtr == 0: # if this component has not been matched to any part type

 bomItemsSorted.append(bomItem)

 # seems to work, more testing ???

 # sorts Screws according to thread size

 bomItems2ndSort: list[BomItem] = []

 # create a list for each part type to be later combined ?

 #g_screwType = ['5/16-18', '1/4-20', '10-32', '10-24', '8-32', '6-32', '4-40', '2-56', \

 # '#6', '#4', '#2']

 # Screw 1/4"-20 3/4"L Socket-Head 18-8SS Black-Oxide 96006A706 $10.74(25)

 # Screw 8-32 7/16" PanHead Phillips 18-8SS 91772A193 $9.55(100)

 # Screw 1/4"-20 1-1/4" SocketHead 316SS 92185A544 $4.81(10)

 for screwType in g_screwType:

 for bomItem in bomItemsSorted:

 # if this is a screw that hasn't been sorted by thread type

 if bomItem.partType == 'screw' and bomItem.sortCtr < 2:

 # check if '5/16-18' appears in component name

 # use other than 20

 index = bomItem.name.find(screwType, 0, 20)

 if index > 1:

 bomItem.sortCtr = 2

 bomItems2ndSort.append(bomItem)

 for bomItem in bomItemsSorted:

 if bomItem.sortCtr < 2:

 bomItems2ndSort.append(bomItem)

 showParsedNames = False

 match Prefs.sortOption:

 case SortOption.eSORTED_BY_TYPE:

 showParsedNames = True

 case SortOption.eNO_SORTING:

 showParsedNames = True

 case SortOption.eNO_SORTING_ORG_NAMES:

 showParsedNames = False

 # g_BOMItemsToList will be that to be listed and then saved

 if Prefs.sortOption == SortOption.eSORTED_BY_TYPE:

 #g_BOMItemsToList = bomItemsSorted

 g_BOMItemsToList = bomItems2ndSort

 # use bomItems = bomItems2ndSort to write over a reuse bomItems ???

 else:

 g_BOMItemsToList = bomItems

 # use sortCtr as opposed to .sorted =1 match to part type, =2 match to screw type

 # before checking against this remove '"' from name ???

 # g_screwType = ['5/16-18', '1/4-20', '10-32', '10-24', ...

 # use list of lists with first element matching part type, ie ['screw', '5/16-18', ...

 # for screwType in g_screwType:

 # allow screwType text to be anywhere in name

 # list of lists:

 # partTypeSort[\

 # ['screw', '5/16-18', ...], \

 # ['nut', '5/16-18', ...] \

 #

 # g_partSubType = 'screw, 5/16-18, ...'

 # g_partSubType += 'nut, 5/16-18, ...'

 #if Prefs.sortOption = SortOption.

 #bomItemsSorted = bomItems

 # this is used if showing original Component Names without parsing

 compNameColWidth = ColWidths.descrip + ColWidths.space \

 + ColWidths.partNum + ColWidths.space + ColWidths.price

 # create Column Header text and undelines

 # 'Line Qty Type Description Part Num Price'

 # '--- -- -------- --------------------------------------- -------- --------'

 # or

 # 'Line Qty Type Part Name'

 # '--- -- -------- ---'

 # create column Titles

 lineText = setStrSize('Line', ColWidths.lineCtr + ColWidths.space)

 lineText += setStrSize('Qty', ColWidths.qty + ColWidths.space)

 lineText += setStrSize('Type', ColWidths.type + ColWidths.space)

 if showParsedNames == True:

 lineText += setStrSize('Description', ColWidths.descrip + ColWidths.space)

 lineText += setStrSize('Part Num', ColWidths.partNum + ColWidths.space)

 lineText += setStrSize('Price', ColWidths.price) + '\n'

 else:

 lineText += setStrSize('Part Name', compNameColWidth) + '\n'

 # create dashes under titles

 lineText2 = ('-' * ColWidths.lineCtr) + (' ' * + ColWidths.space)

 lineText2 += ('-' * ColWidths.qty) + (' ' * + ColWidths.space)

 lineText2 += ('-' * ColWidths.type) + (' ' * + ColWidths.space)

 if showParsedNames == True:

 lineText2 += ('-' * ColWidths.descrip) + (' ' * + ColWidths.space)

 lineText2 += ('-' * ColWidths.partNum) + (' ' * + ColWidths.space)

 lineText2 += ('-' * ColWidths.price) + (' ' * + ColWidths.space) + '\n'

 else:

 lineText2 += '-' * compNameColWidth + '\n'

 # use += if other header info can get added ??

 g_BOMasText = lineText + lineText2

 g_text += lineText + lineText2

 g_textBoxMain.formattedText = textHdr + g_text + '</div>'

 adsk.doEvents() # needed for text box update

 time.sleep(1) # 1 second delay

 # list the sorted components

 #for bomItem in bomItemsSorted:

 for bomItem in g_BOMItemsToList:

 lineCtr += 1

 # start line with HTML formatting to allow lines to have alternating colors

 # lower down the line must end with '' to ensure the HTML style is used

 # for this line only

 if (lineCtr % 2) == 0: # if even

 lineText = '' # green

 else: # if odd

 lineText = '' # blue

 # convert line counter and quantity to strings with leading zeros to ensure these

 # fields always have the same number of characters to ensure aligned columns

 lineCtrText = str(lineCtr).zfill(ColWidths.lineCtr)

 qtyText = str(bomItem.qty).zfill(ColWidths.qty)

 # use specified deliminator ???

 # other method to parse out Part Num and Price ???

 # Component Name example with double spaces separating Type, Name, Part Num, and Price

 # 'Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)'

 # Parsed result:

 # fields[0] = Type, ie 'Screw', 'Nut', 'Bar'

 # fields[1] = Name, ie '10-32 2"L Socket-Head 18-8SS Fully-Threaded'

 # fields[2] = Part Num, ie '92196A226'

 # fields[3] = Price, ie '$10.32(25)'

 fields = bomItem.name.split(' ')

 # 'Line,Qty,Type,Part Description,Part Num,Price'

 # '000,00,Screw,10-32 2"L Socket-Head 18-8SS Fully-Threaded,92196A226,$10.32(25)

 # remove type column because type is repeated ???

 # or use undefined for other components ???

 # build line for part using specified column widths

 # Line Qty Type Part Description Part Num Price

 # '000 00 Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)

 lineText += setStrSize(lineCtrText, ColWidths.lineCtr + ColWidths.space)

 #if len(fields) < 2:

 # lineText += setStrSize(fields[0], ColWidths.descrip + ColWidths.space)

 #else:

 lineText += setStrSize(qtyText, ColWidths.qty + ColWidths.space)

 lineText += setStrSize(bomItem.partType, ColWidths.type + ColWidths.space)

 if showParsedNames == True:

 if len(fields) > 1:

 lineText += setStrSize(fields[1], ColWidths.descrip + ColWidths.space)

 else:

 lineText += setStrSize(bomItem.name, ColWidths.descrip + ColWidths.space)

 if len(fields) > 2:

 lineText += setStrSize(fields[2], ColWidths.partNum + ColWidths.space)

 if len(fields) > 3:

 lineText += setStrSize(fields[3], ColWidths.price + ColWidths.space)

 else:

 lineText += bomItem.name

 lineText += ''

 g_text += lineText + '\n'

 g_textBoxMain.formattedText = textHdr + g_text + '</div>'

 # updates Status text box

 createBOMStatusUpdate(' Listing: Component occurences=' + str(occurenceCtr) \

 + ' Components=' + str(componentCtr) \

 + ' Type matches=' + str(typeMatchCtr) \

 + ' BOM items=' + str(lineCtr) \

 + ' Ignored=' + str(ignoreCtr) \

 + ' Prints=' + str(printCtr))

 adsk.doEvents() # needed for text box update

 # end for bomItem in g_BOMItemsToList:

 # updates Status text box

 createBOMStatusUpdate(' Finished: Component occurences=' + str(occurenceCtr) \

 + ' Components=' + str(componentCtr) \

 + ' Type matches=' + str(typeMatchCtr) \

 + ' BOM items=' + str(lineCtr) \

 + ' Ignored=' + str(ignoreCtr) \

 + ' Prints=' + str(printCtr))

 adsk.doEvents() # needed for text box update

#==

called by: createBOM()

def createBOMStatusUpdate(text):

 hdr = '<div style="font-family:consolas; background-color:lightblue; \

 font-size:12px; color:blue; white-space:pre-wrap;">'

 g_textBoxStatus.formattedText = hdr + text + '</div>'

#==

called by: notify() in CommandInputChangedHandler()

Called when the user clicks the "Save BOM to file" button.

def saveBOMStart():

 if len(g_textBoxMain.text) < 10: #use other method

 msgText = 'BOM must be created first.'

 ret = showMsgBox(msgText, 'red', 'Error', adsk.core.MessageBoxButtonTypes.OKButtonType)

 else:

 # show a Save File Dialog window to allow user to select the save location.

 saveBOMFileDialog()

#==

called by: saveBOMStart()

Called when the user clicks the "Save BOM to file" button and the BOM had been created,

def saveBOMFileDialog():

 try:

 # this can be considered for use

 # returns string for path of Downloads folder C:\Users\<user>\Downloads\

 #downloadsPath = str(Path.home() / "Downloads")

 fileNameSuffix = '_BOM'

 # http://help.autodesk.com/view/fusion360/ENU/?guid=GUID-69478fef-f96f-4e7c-b5af-766301072042

 fileDialog = g_ui.createFileDialog()

 fileDialog.isMultiSelectEnabled = False

 fileDialog.title = 'Save BOM to File'

 fileDialog.filter = 'CSV (*.csv);;TXT (*.txt);;All Files (*.*)'

 fileDialog.filterIndex = 0

 fileDialog.initialFilename = g_designName + fileNameSuffix

 #fileDialog.initialDirectory =

 # The Save File dialog window has a lower "File name:" Combo Box and under it

 # is a "Save as type:" List Box. A Combo Box allows one to either select drop-down

 # options as a List Box or the option to type or paste text. A List Box only allows

 # selecting from drop-down options.

 # When one clicks on a file shown in the navigation view, its name will show in the

 # "File name:" Combo Box.

 # If user selects an existing file, the operating system will display the message:

 # "Confirm Save As"

 # "Design1.csv already exists. Do you want to replace it?"

 # "Yes" "No" buttons

 dialogResult = fileDialog.showSave()

 if dialogResult == adsk.core.DialogResults.DialogOK: # user clicked "OK"

 # check if valid file ???

 # returns file name with path

 # C:\Users\<user>\Downloads\ReactorV2_BOM.txt

 fileNameWithPath = fileDialog.filename

 # Ex filePath "C:\Users\<user>\Downloads\", Ex fileName "ReactorV2_BOM.txt"

 filePath, fileName = os.path.split(fileNameWithPath)

 # Ex fileNameWoExt ""ReactorV2_BOM", Ex fileExt ".txt"

 fileNameWoExt, fileExt = os.path.splitext(fileName)

 # uncomment for diagnostics

 #msgText = 'fileDialog.filterIndex= ' + str(fileDialog.filterIndex) + '\n'

 #msgText += 'fileNameWithPath= ' + str(fileNameWithPath) + '\n'

 #msgText += 'filePath= ' + str(filePath) + '\n'

 #msgText += 'fileName= ' + str(fileName) + '\n'

 #msgText += 'fileNameWoExt= ' + str(fileNameWoExt) + '\n'

 #msgText += 'fileExt= ' + str(fileExt)

 #showMsgBox(msgText, 'green', 'Diag', adsk.core.MessageBoxButtonTypes.OKButtonType)

 # This commented code is kept here for reference to determine the filter option

 # selected by the user. It's not used now because the file extension is used

 # instead because if All Files (*.*) is selected, the user can select a .csv or

 # .txt file to write over.

 #if fileDialog.filterIndex == 0: # 1st filter option: CSV

 #fileType = 'csv'

 #elif fileDialog.filterIndex == 1: # 2nd filter option: TXT

 #fileType = 'txt'

 #elif fileDialog.filterIndex == 3: # 3rd filter option: All Files

 #fileType = 'txt'

 # Use the extension of the file selected using the file dialog window to determine

 # the format to save as. When the user selects All Files (*.*) as the filter, any

 # file type can be selected.

 # Note that the first BOM save of a new design, will create a file that likely

 # did not exist already because the file name will, by default, be set to the

 # design name. Later BOM saves for the same design will allow thu user to save

 # over the same file, unless intentionally named otherwise.

 if fileExt.lower() == '.csv':

 fileType = FileType.eCSV

 elif fileExt.lower() == '.txt':

 fileType = FileType.eTXT

 else:

 fileType = FileType.eUNDEF

 # If the user selects a file other than a .csv or .txt, a Message Box will be

 # shown to alert the user. The user does not have an option to continue. Clicking

 # OK will close the message and abort the save. The user will have to click

 # Save again to select a different file.

 if fileType == FileType.eUNDEF:

 msgText = 'Improper file type was selected.\n'

 msgText += 'Should be a .csv or .txt file.'

 ret = showMsgBox(msgText, 'red', 'Error', \

 adsk.core.MessageBoxButtonTypes.OKButtonType)

 return # the save will always be aborted here

 # Check if the file name (without the extension) equals the design name. By

 # default the file name will match the design name. If the user, perhaps

 # mistakingly, selects the BOM of another design to write over, alert the user.

 # By default, the file name used when the file is created is the design name

 # followed by a '_BOM' suffix. Before performing the name comparison, remove

 # the suffix if it exists at the end of

 # returns -1 if string not found, 0 if the string starts at the first character

 index = fileNameWoExt.find(fileNameSuffix, 0)

 if index > 0:

 # text[:index] extracts the text up to the index value. The first character is at

 # index = 0. For example, if index = 2, the first two characters will be returned.

 fileNameWoExt = fileNameWoExt[:index]

 if fileNameWoExt == g_designName:

 fileNameMatch = True

 else:

 fileNameMatch = False

 # If names, as discussed above, don't match alert the user with a Message Box.

 # The user can click OK to still write over the selected file or Cancel.

 if fileNameMatch == False:

 msgText = 'The file name selected ' + fileNameWoExt + '\n'

 msgText += 'does not match the design name ' + g_designName + '.\n\n'

 msgText += 'Continue anyway?'

 ret = showMsgBox(msgText, 'red', 'Error', \

 adsk.core.MessageBoxButtonTypes.OKCancelButtonType)

 if ret == adsk.core.DialogResults.DialogCancel: # if Cancel was clicked

 return

 # at this point fileType can only be FileType.eCSV or FileType.eTXT

 # if FileType.eCSV calls saveBOMasCsv()

 # if FileType.eTXT saves g_textBoxMain.text

 saveBOMtoFile(fileNameWithPath, fileType)

 # zzz

 # When All Files are selected, the user can select any type of file to write

 # over. Only allow doing so with a .csv or .txt and use the extension to

 # determine which file type to save as. If the file name does Not match the

 # present project name, show a message to the user to confirm the action.

 #saveBOMasCsv(

 else: # user clicked "Cancel"

 return

 #g_ui.messageBox('filename=' + fileNameWithPath)

 except:

 if g_ui:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

called by: saveBOMFileDialog()

def saveBOMtoFile(fileNameWithPath, fileType: FileType):

 textToSave = ''

 if fileType == FileType.eCSV:

 # uses g_BOMItemsToList to create .csv

 textToSave = saveBOMasCsv()

 elif fileType == FileType.eTXT:

 # don't just save text box contents ???

 textToSave = g_textBoxMain.text

 try:

 #arguments:

 # 2nd 'r' = Opens a file for reading, error if the file does not exist

 # 'a' = Opens a file for appending, creates the file if it does not exist

 # 'w' = Opens a file for writing, creates the file if it does not exist

 # 'x' = Creates the specified file, returns an error if the file exists

 # 'b' can be appended to the above for binary data, text is default

 # 3rd -1 = for Buffering use system default

 # 4th utf-8-sig causes a "byte order mark" signature to be written to the start of

 # the file to indicate UTF-8

 file = open(fileNameWithPath, 'w', -1, 'utf-8')

 file.write(textToSave)

 file.close()

 txt = 'File Saved: ' + fileNameWithPath

 saveBOMStatusUpdate(txt, 'lightgreen', 'darkgreen')

 except:

 if g_ui:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

called by: saveBOMtoFile()

def saveBOMStatusUpdate(text, backColor, fontColor):

 hdr = '<div style="font-family:consolas; font-size:12px; color:' + fontColor + '; '

 hdr += 'text-align:center; background-color:' + backColor + '; '

 hdr += 'white-space:pre-wrap;">'

 Ctrls.txtSaveBOMStatus.formattedText = hdr + text + '</div>'

#zzz

#==

called by: saveBOMtoFile()

Called if user chose for a .csv file to be created or selected an exisring .csv

file to overwrite.

Uses g_BOMItemsToList

Ex: textToSave = saveBOMasCsv()

def saveBOMasCsv():

 showParsedNames = False

 match Prefs.sortOption:

 case SortOption.eSORTED_BY_TYPE:

 showParsedNames = True

 case SortOption.eNO_SORTING:

 showParsedNames = True

 case SortOption.eNO_SORTING_ORG_NAMES:

 showParsedNames = False

 delim = ','

 # create Column Header text

 # 'Line,Qty,Type,Description,Part Num,Price'

 # or

 # 'Line,Qty,Type,Part Name'

 lineText = 'Line' + delim

 lineText += 'Qty' + delim

 lineText += 'Type' + delim

 if showParsedNames == True:

 lineText += 'Description' + delim

 lineText += 'Part Num' + delim

 lineText += 'Price' + delim

 else:

 lineText += 'Part Name' + delim

 textCSV = lineText

 lineCtr = 0

 # list the sorted components

 #for bomItem in bomItemsSorted:

 for bomItem in g_BOMItemsToList:

 lineCtr += 1

 # 'Line,Qty,Type,Part Description,Part Num,Price'

 # '1,1,Screw,10-32 2"L Socket-Head 18-8SS Fully-Threaded,92196A226,$10.32(25)

 lineText = str(lineCtr) + delim

 lineText += str(bomItem.qty) + delim

 lineText += bomItem.partType + delim # Ex: 'Screw', 'Nut', ...

 # use specified deliminator ???

 # other method to parse out Part Num and Price ???

 # Component Name example with double spaces separating Type, Name, Part Num, and Price

 # 'Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)'

 # Parsed result:

 # fields[0] = Type, ie 'Screw', 'Nut', 'Bar'

 # fields[1] = Name, ie '10-32 2"L Socket-Head 18-8SS Fully-Threaded'

 # fields[2] = Part Num, ie '92196A226'

 # fields[3] = Price, ie '$10.32(25)'

 fields = bomItem.name.split(' ')

 if showParsedNames == True:

 if len(fields) > 1:

 lineText += fields[1] + delim # Part Name without Type, Part Number, and Price

 else:

 lineText += bomItem.name + delim

 if len(fields) > 2:

 lineText += fields[2] + delim

 if len(fields) > 3:

 lineText += fields[3] + delim

 else:

 lineText += bomItem.name # Part Name including Part Number and Price

 textCSV += '\n' + lineText

 return textCSV

#==

called by: notify() in CommandInputChangedHandler()

Called when the user clicks the "Save BOM to file" button.

def exportSTLsStart():

 if len(g_printedItems) == 0:

 showMsgBox('Create BOM before exporting STLs.', 'red', 'Error', \

 adsk.core.MessageBoxButtonTypes.OKButtonType)

 return

 # do these 3 at startup ??? can user select new design with script open ?

 app = adsk.core.Application.get()

 activeDesign = app.activeDocument # get active design

 g_designName = activeDesign.name # get name of active design

 try:

 # maintain global initial directory ???

 # returns string for path of Downloads folder C:\Users\<user>\Downloads\

 downloadsPath = str(Path.home() / "Downloads")

 # Set styles of file dialog.

 folderDialog = g_ui.createFolderDialog()

 folderDialog.title = 'Select or Create Folder'

 folderDialog.initialDirectory = downloadsPath

 #folderDialog.folder = g_designName + 'STL Files'

 # Show folder dialog

 dialogResult = folderDialog.showDialog()

 if dialogResult == adsk.core.DialogResults.DialogOK: # user clicked "OK"

 newFolderName = g_designName + '_STL_Files'

 newFolderPath = folderDialog.folder

 #
 (break) is used instead of \n for line breaks in HTML

 txt = 'Create new folder ' \

 + '' + newFolderName + '
' \

 + ' in path ' \

 + '' + newFolderPath + ''

 ret = g_ui.messageBox(txt, 'Create folder?', \

 adsk.core.MessageBoxButtonTypes.OKCancelButtonType)

 if ret == adsk.core.DialogResults.DialogOK: # if OK was clicked

 saveToPath = newFolderPath + '\\' + newFolderName # note that \\ becomes \

 ret = createFolder(saveToPath)

 if ret == 1 or ret == 2: # if the folder successfully created or exists already

 # check if STLs exist in folder

 fileCnt = checkIfFilesExist(saveToPath, 'stl')

 if fileCnt > 0:

 txt = 'Folder already contains ' + str(fileCnt) + ' .STL files,\n'

 txt += 'which may be overwritten.\n\n'

 txt += 'Click OK to continue or Cancel.'

 ret = showMsgBox(txt, 'orange', 'Warning', \

 adsk.core.MessageBoxButtonTypes.OKCancelButtonType)

 if ret == adsk.core.DialogResults.DialogCancel: # if Cancel was clicked

 return

 exportSTLFiles(saveToPath)

 else:

 showMsgBox('Error creating folder', 'red', 'Error', \

 adsk.core.MessageBoxButtonTypes.OKButtonType)

 #os.mkdir()

 #ret = g_ui.messageBox('path=' + folderDialog.folder)

 else: # user clicked Cancel

 pass

 except:

 if g_ui:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

called by: exportSTLsStart()

def checkIfFilesExist(folderPath, extension):

 if extension.find('.', 0, 1) == -1: # if extension does not start with '.'

 extensionMatch = '.' + extension

 extensionMatch = extensionMatch.lower() # ex '.stl'

 #g_ui.messageBox('path='+folderPath + '\n ext='+extension, 'checkIfFilesExist')

 fileCtr = 0

 try:

 for file in os.listdir(folderPath):

 # issue if file has no extension ???

 # fileExtension will start with '.', ie '.stl'

 filename, fileExtension = os.path.splitext(file)

 #g_ui.messageBox('file='+filename + '\n ext='+fileExtension, 'os.listdir')

 if fileExtension.lower() == extensionMatch: # if match (case insensitive)

 fileCtr += 1

 except:

 if g_ui:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

 return fileCtr

#==

called by: exportSTLsStart()

Ex: ret = showMsgBox('Error creating folder', 'red', 'Error', \

adsk.core.MessageBoxButtonTypes.OKButtonType)

def showMsgBox(text, textColor, title, buttons: adsk.core.MessageBoxButtonTypes):

 # number of characters that will fit on a line for various font and size for

 # a message

 # font-family:consolas; font-size:10px 80

 # font-family:consolas; font-size:11px 72

 # font-family:consolas; font-size:12px 66

 # font-family:consolas; font-size:14px 58

 # white-space:pre-wrap allows use of \n for line breaks in HTML

 # font-family:courier seemed to be limited to a larger size

 txt = '<div style="font-family:consolas; font-size:14px; color:' + textColor +'; \

 white-space:pre-wrap;">'

 #0000000001111111111222222222233333333334444444444555555555

 #1234567890123456789012345678901234567890123456789012345678

 #==

 txt += text + '\n'

 txt += '</div>' # HTML div end

 # options provided by adsk.core.MessageBoxButtonTypes

 # OKButtonType 0 message box contains an OK button (default)

 # OKCancelButtonType 1 message box contains OK and Cancel buttons

 # RetryCancelButtonType 2 message box contains Retry and Cancel buttons

 # YesNoButtonType 3 message box contains Yes and No buttons

 # YesNoCancelButtonType 4 message box contains Yes, No, and Cancel buttons

 # if return is used, adsk.core.DialogResults is an enumerated constant for values

 return g_ui.messageBox(txt, title, buttons)

#==

called by: exportSTLsStart()

Ex: ret = createFolder(saveToPath)

def createFolder(path):

 # import os is needed for the os functions

 # os.path.exists() returns True if there is either a folder or a regular file with

 # the name.

 # os.path.isdir() will return True if the path exists and is a directory, or a

 # symbolic link to a directory.

 ret = os.path.isdir(path)

 if ret == True: # if the directory exists

 return 2

 try:

 os.mkdir(path)

 except OSError: # if the directory creation failed

 return -1

 #print ("Creation of the directory %s failed" % path)

 else:

 return 1

 #print ("Successfully created the directory %s " % path)

#==

called by: Not used now, but keep for possible future use

Allows user to create a New Folder.

def createFolderDialog():

 try:

 # this can be considered for use

 # returns string for path of Downloads folder C:\Users\<user>\Downloads\

 #downloadsPath = str(Path.home() / "Downloads")

 # http://help.autodesk.com/view/fusion360/ENU/?guid=GUID-69478fef-f96f-4e7c-b5af-766301072042

 fileDialog = g_ui.createFileDialog()

 fileDialog.isMultiSelectEnabled = False

 fileDialog.title = 'Select location of new folder for STL files.'

 fileDialog.filter = 'All Files (*.*)'

 fileDialog.filterIndex = 0

 fileDialog.initialFilename = g_designName + '_STL Files'

 #fileDialog.initialDirectory =

 dialogResult = fileDialog.showSave()

 if dialogResult == adsk.core.DialogResults.DialogOK: # user clicked "OK"

 # check if valid file ???

 # returns file name with path

 # C:\Users\<user>\Downloads\ReactorV2_BOM.txt

 #fileNameWithPath = fileDialog.filename

 pass

 else: # user clicked "Cancel"

 return

 #g_ui.messageBox('filename=' + fileNameWithPath)

 except:

 if g_ui:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

called by: exportSTLsStart()

Called to export STL files. This is a different feature from saving the BOM file.

Ex: exportSTLFiles(saveToPath)

if folder exists use it and don't create new one ???

append file names with material and qty ???

def exportSTLFiles(folder):

 try:

 # check if folder exists ???

 # use global app, product, design ???

 app = adsk.core.Application.get()

 product = app.activeProduct # design data, toolpath data, ...

 design = adsk.fusion.Design.cast(product)

 exportSTLsStatusUpdate(' Exporting STL files: ' + str(len(g_printedItems)))

 adsk.doEvents() # needed for text box update

 # create a single exportManager instance

 exportMgr = design.exportManager

 textHdr = '<div style="font-family:consolas; font-size:12px; color:blue; \

 white-space:pre-wrap;">'

 # create Column Header text and undelines

 # 'Line Qty Material Part Name'

 # '--- -- -------- ---'

 # create column Titles

 lineText = setStrSize('Line', ColWidths.lineCtr + ColWidths.space)

 lineText += setStrSize('Qty', ColWidths.qty + ColWidths.space)

 lineText += setStrSize('Material', ColWidths.type + ColWidths.space)

 lineText += setStrSize('Component Name', ColWidths.descrip + ColWidths.space) + '\n'

 # create dashes under titles

 lineText2 = ('-' * ColWidths.lineCtr) + (' ' * + ColWidths.space)

 lineText2 += ('-' * ColWidths.qty) + (' ' * + ColWidths.space)

 lineText2 += ('-' * ColWidths.type) + (' ' * + ColWidths.space)

 lineText2 += ('-' * ColWidths.descrip) + (' ' * + ColWidths.space) + '\n'

 listText = lineText + lineText2

 g_textBoxExportSTLsList.formattedText = textHdr + listText + '</div>'

 adsk.doEvents() # needed for text box update

 lineCtr = 0

 errorCtr = 0

 # loop through components to be 3D Printed

 for item in g_printedItems:

 lineCtr += 1

 comp = item.comp

 # Creates an STLExportOptions object that's used to export a design in STL format.

 # Creation of the STLExportOptions object does not perform the export. You must

 # pass this object to the ExportManager.execute method to perform the export.

 # Argument: geometry to export. Can be a BRepBody, Occurrence, or Component object.

 # A 2nd optiona argument can specify The filename of the STL file to be created

 # instead of later using the filename property.

 stlOptions = exportMgr.createSTLExportOptions(comp)

 # note that \\ becomes \

 fileNameWithPath = folder + '\\' + item.name + '(' + item.material + ').stl'

 stlOptions.filename = fileNameWithPath

 # allow preference option ???

 # set Mesh Refinement

 stlOptions.meshRefinement = adsk.fusion.MeshRefinementSettings.MeshRefinementMedium

 # create and save .stl file

 # returns True if successful

 ret = exportMgr.execute(stlOptions)

 if ret == False:

 errorCtr += 1

 # start line with HTML formatting to allow lines to have alternating colors

 # lower down the line must end with '' to ensure the HTML style is used

 # for this line only

 if (lineCtr % 2) == 0: # if even

 lineText = '' # green

 else: # if odd

 lineText = '' # blue

 # convert line counter and quantity to strings with leading zeros to ensure these

 # fields always have the same number of characters to ensure aligned columns

 lineCtrText = str(lineCtr).zfill(ColWidths.lineCtr)

 qtyText = str(item.qty).zfill(ColWidths.qty)

 # remove any text starting with '('

 # when materials are duplicated, the names are suffixed with '(1)', '(2)', ...

 materialName = cleanMaterialName(item.material)

 # build line for part using specified column widths

 # Line Qty Material Part Name

 # '000 00 ABS Control Rod Spacer

 lineText += setStrSize(lineCtrText, ColWidths.lineCtr + ColWidths.space)

 lineText += setStrSize(qtyText, ColWidths.qty + ColWidths.space)

 lineText += setStrSize(materialName, ColWidths.type + ColWidths.space)

 lineText += setStrSize(item.name, ColWidths.descrip + ColWidths.space)

 # add column for error ???

 lineText += ''

 listText += lineText + '\n'

 g_textBoxExportSTLsList.formattedText = textHdr + listText + '</div>'

 exportSTLsStatusUpdate(' Exporting STL files: ' + str(lineCtr) \

 + ' Name=' + str(item.name) \

 + ' Material=' + str(item.material) \

 + ' Errors=' + str(errorCtr))

 adsk.doEvents() # needed for text box update

 except:

 if g_ui:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

called by: exportSTLFiles()

removes any text starting with '('

when materials are duplicated, the names are suffixed with '(1)', '(2)', ...

def cleanMaterialName(materialName):

 # returns -1 if string not found, 0 if the string starts at the first character,

 # 1 if at 2nd character, ...

 ret = materialName.find('(')

 if ret > 0:

 return materialName[:ret]

 else:

 return materialName

#==

called by: exportSTLFiles()

def exportSTLsStatusUpdate(text):

 hdr = '<div style="font-family:consolas; background-color:lightblue; \

 font-size:12px; color:blue; white-space:pre-wrap;">'

 Ctrls.txtExportSTLsStatus.formattedText = hdr + text + '</div>'

not used ???

def getPartFields(text, deliminator):

 fields = text.split(deliminator)

 return fields

#==

called by: taskRun()

'Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)'

def getPartType(text, deliminator, lengthMax):

 # Using .find() as done in this code, allows the optional use of a multi-character

 # deliminator, such as 2 spaces.

 # Below is a method that can be used if there is a single character deliminator:

 # word = text.split(g_partTypeDelim, 1)[0]

 # If one wishes to handle multiple deliminator options a replace can be used to

 # replace one option with another. Using text.replace('_', ' ') would replace

 # every '_' with a space and then split with using the space.

 # .find() returns the index of the start of the substring, which is the single or

 # multiple character deliminator that seperates the part type from the full name.

 # It returns -1 if the substring is Not found.

 # deliminator, start of string, last char to end search at

 index = text.find(deliminator, 0, lengthMax)

 if index > 0: # if No deliminator is found

 # text[:index] extracts the text up to the index value. The first character is at

 # index = 0. For example, if the index = 2, the first two characters will be returned.

 return text[:index]

 else:

 return '' # return an empty string

#not called ???

#==

called by: taskRun()

def showCompleteMsgBox(clean):

 if clean == True: # if Cleaning design, otherwise just listing Sketches and Features

 msgTitle = 'Cleaning Complete'

 else:

 msgTitle = 'Listing Complete'

 # font-family:consolas; font-size:10px 80

 # font-family:consolas; font-size:11px 72

 # font-family:consolas; font-size:12px 66

 # font-family:consolas; font-size:14px 58

 # white-space:pre-wrap allows use of \n for line breaks in HTML

 # font-family:courier seemed to be limited to a larger size

 msgText = '<div style="font-family:consolas; font-size:14px; color:darkblue; \

 white-space:pre-wrap;">'

 #0000000001111111111222222222233333333334444444444555555555

 #1234567890123456789012345678901234567890123456789012345678

 #==

 msgText += 'Save Report to File?' + '\n\n'

 msgText += 'This file will be saved to the Downloads folder.' + '\n'

 msgText += '</div>' # HTML div end

 # OKButtonType 0 message box contains an OK button (default)

 # OKCancelButtonType 1 message box contains OK and Cancel buttons

 # RetryCancelButtonType 2 message box contains Retry and Cancel buttons

 # YesNoButtonType 3 message box contains Yes and No buttons

 # YesNoCancelButtonType 4 message box contains Yes, No, and Cancel buttons

 ret = g_ui.messageBox(msgText, msgTitle, 3)

 # DialogCancel 1 return value is Cancel (usually sent from a button labeled Cancel)

 # DialogError -1 An unexpected error occurred

 # DialogNo 3 return value is No (usually sent from a button labeled No)

 # DialogOK 0 return value is OK (usually sent from a button labeled OK)

 # DialogYes 2 return value is Yes (usually sent from a buttons labeled Yes and Retry)

 if ret == 2:

 saveReportFile(clean)

not called ???

#==

called by: showCompleteMsgBox()

def saveReportFile(clean):

 try:

 if clean == True: # if Cleaning design, otherwise just listing Sketches and Features

 fileName = 'Cleaning Results for ' + g_designName + '.txt'

 else:

 fileName = 'Listing Results for ' + g_designName + '.txt'

 # returns string for path of Downloads folder C:\Users\<user>\Downloads\

 downloadsPath = str(Path.home() / "Downloads")

 fileNameWPath = downloadsPath + '\\' + fileName # note that \\ becomes \

 #arguments:

 # 2nd 'r' = Opens a file for reading, error if the file does not exist

 # 'a' = Opens a file for appending, creates the file if it does not exist

 # 'w' = Opens a file for writing, creates the file if it does not exist

 # 'x' = Creates the specified file, returns an error if the file exists

 # 'b' can be appended to the above for binary data, text is default

 # 3rd -1 = for Buffering use system default

 # 4th utf-8-sig causes a "byte order mark" signature to be written to the start of

 # the file to indicate UTF-8

 file = open(fileNameWPath, 'w', -1, 'utf-8')

 file.write(g_text)

 file.close()

 except:

 if g_ui:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#==

returns string with a length specified by the 2nd argument, which is the input string

truncated or padded with trailing spaces. This is useful to create column aligned

tables

def setStrSize(text, size):

 if len(text) < size:

 return text + (size - len(text)) * ' '

 else:

 return text[:size]

#==

starting point of the program

context is not used, but could be used to pass info, such as arguments as done

with a Windows program.

def run(context): # the program starts here

 global g_ui

 g_ui = None

 # try and except prevents a program crash if a statement in its scope causes an error

 # if a statement causes an error the program execution will jump to except, which will

 # allow the program to provide feedback on the error. Much nicer then just crashing.

 try:

 app = adsk.core.Application.get()

 g_ui = app.userInterface # user interface

 # Get the existing command definition or create it if it doesn't already exist.

 cmdDef = g_ui.commandDefinitions.itemById('cmdDialogCleaner')

 if not cmdDef:

 cmdDef = g_ui.commandDefinitions.addButtonDefinition(\

 'cmdDialogCleaner', g_scriptName, g_scriptDescription)

 # Connect to the command created event.

 onCommandCreated = CommandCreatedHandler()

 cmdDef.commandCreated.add(onCommandCreated)

 g_handlers.append(onCommandCreated)

 # Execute the command definition.

 cmdDef.execute()

 # Prevent this module from being terminated when the script returns, because we are waiting for

event handlers to fire.

 adsk.autoTerminate(False)

 except:

 if g_ui:

 g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

if the program is closed some cleanup can be done

def stop(context):

 ui = None

 #try:

 #app = adsk.core.Application.get()

 #ui = app.userInterface

 #ui.messageBox('Stop addin')

 #except:

 #if ui:

 #ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

