Mr. Barbetta’s .
Makergﬁ MakerSpace Autodesk Fusion API

“Measure Once, Cut Twice” BOM (Bill of Materials) and STL Creator

=0

Many advanced software programs implement an API (Applications Programming Interface), which comprise a set of

programming functions and objects, that allow one to write code in a pramming language to extend the functionality of
the software. The Fusion API can be used with programs written in either C++ or Python, which Fusion refersto as a
script. One can download a script written by Autodesk or independent programmers or one can write their own. The
script described in this document was written for missile systems to automate the process of creating a BOM (Bill of
Materials) and generating the STL files for 3D printing components.

Notice of liability:

This script is intended for missile development. The author assumes full responsibility for any mishaps.

Below is the top of the script window when run for the classroom missile launcher. It shows that there are 431 partsin
total and 192 different components and 70 3D printed parts.

@ DESIGN BOM CREATOR
Create BOM Save BOM Export STL Files Frefmnces he
Status ~ Finished: Component occurences=431 Components=192 Type matches=75 BOM items=192 Ignored=@ Prints=70

Click to Create BOM

Line Qty Type Description Part Num Price
2801 14 screw 1/47-20 3/4"L Socket-Head 18-855 Black-Oxide 960064706 $10.74(25)
a2 82 screw 1/47-28 1-1/4" SocketHead 31655 92185A544 $4.81(1@)

AR AR arrew 1/4=.268 3I/R"1 Snrkat.Haad 1R.R85 Rlark.fiwids SRABRATAT L7 SXIRA

Contents

Yoo T TS o T 1 g[S]] o ST PR 3
CreatiNG The BOM ... ittt ettt et s et s et s et s eaa s eaasaansaaasasasasnsasnsasssaansasssesnsanssesnsesnsenssenssenssenssennrennns 5
SAVING TNE BOM ...ttt ettt ettt e et ettt s e ta e e tane s etaa e tanesaene e tansaaane s ateaseaanesennaserenssennanerenssennnnan 6
LT =T =T Lot PP PP 7
Setting Part Types, Screw Types, and 3D Print MaterialS.ot s e sa et s e eaeassansansanaennan 8
FOrmat Of CoOmMPONENT INGMES ...iuuiiiiiiiiii ittt ettt ettt e ettt etuetasetueeaussauseaassenssensaenssenssenssenssenssensennssensennssnnsenns 9
GENEIATING STL FILES ettt ettt ettt e et ettt e e ta et tea e etae s e tea s e ane s etaaseeanesatsasetenesaanasetenseeanesennnneeenes 10
PYTNON COOE LiSTING ittt ettt e ee e ettt eee et st e e e esseassassansansanstsstnssesssssessessenssnsenssssssssnssessensensenesnnes 12

Acessing the Script

- openyour project in Fusion and select the top Utilities item

ﬂ WaterRocketLauncher5 v13 (Mr Barbetta) - Autodesk Fusion (Education License)

B8 <008
SOUD SURFACE
DESIGN v
CREATE ¥
<« BROWSER
PIR - £- | WaterRocketLaunchers vi3 O]
D % Document Settings
D @M Named Views
D @l Selection Sets
D & @ Origin
D @ Motion Studies
D @ @l Relationships
D € @l Skeiches
D & @ Construction
4 © [|; BaseAssembly:1
D & Ml Origin
D i Relationships
D i Skeiches
> @ [fa Stationary Structure:1
b ® l_‘ Pin Clevis 1/4"D 3-23/64" Usa...
D @ [k Actuator Linear 10" Stroke:1
> @ [J MotorCover1
> @ [b SwingoutLegAssem:1
> @ [L SwingoutlegAssem:2
> @ [b SwingoutLegAssem:3
> @ [b SwingoutLegAssem:4
> @ [k& ManualElevationSupport1
> @ ([J sirenMount:1
> @ @ siren1
COMMENTS

- from the ADD-INS menu, select Scripts and Add-Ins

r

ﬂ WaterRocketLauncher5 v13 (Mr Barbetta) - Autodesk Fusion (Education License)

(11 s
==
-

v E “y O

SOLID

DESIGN ~

MAKE v

<4 BROWSER

PR N ;| WaterRocketLaunchers v13

A A R

£¥ Document Settings
B Named Views
B8 Selection Sets

& @Ml Origin

iy WaterRocketlLauncherSWg

MESH FORM SHEET METAL

AUTOMATE ~ MODIFY ¥

r@)

& ¥ B0,

PLASTIC UTILITIES MANAGE
W =
[ous o]
ASSEMBLE v CONFIGURE ¥ CONSTRUCT ¥ INSPECT v

& Q-8 EE

SURFACE MESH FORM

=n@dH®

Iz

NEST~

i WaterRocketLauncher5 v13
SHEET METAL PLASTIC UTILITIES

ADD-INS * UTILITY v

INSPECT v SELECT »

4 Scripts and Add-Ins...

Shift+5

*

Scripts and Add-Ins

Fusion App Store

Manage Scripts and Add-Ins

Displays the Scripts and Add-Ins dialog box. Create,

edit, run, stop, debug and manage Scripts and Add-
Ins.

Press Ctrl+/ for more help.

x 4+ 0O @1

[m] X

L0 9

s I

INSERT ¥

MAI

SELECT ¥

- from the +pull-down menu, select Script or add-in from device

ﬂ Scripts and Add-Ins

Q

Browse
Y Favorites

All scripts and add-ins
Filters
v Type

Scripts

& select Folder
O
Organize v New folder
3 Home
il Desktop

¥ Downloads
o Documents

PR Pictures

Folder:

+v

Download add-ins from app store Run Run on Startup Version
Script or add-in from device ®
Create script or add-in
>
= ApplyMaterialToSelection [
Bolt [
- navigate to the location, select the Add-In folder, and click Select Folder
Below, the folder “BOM_and_STL_Creator_by Joe_Barbetta” is shown in the Downloads folder.
> Downloads > C ea
Name
Today
ke
o ' BOM_and_STL_Creator_by_Joe_Barbetta
Earlier this year
*
&
BOM_and_STL_Creator_by_Joe_Barbetta
Select Folder | Cancel

- click on the Play icon next to the script name

For future use, the script should appear in the list upon opening the Scripts and Add-Ins window.

A Python program is often called a Script and hence the use of the term. When Play is clicked, the Python script,
BOM_and_STL_Creator_by_Joe_Barbetta.py, will be run.

ﬂ Scripts and Add-Ins

@]

Y

Browse
¢ Favorites
All scripts and add-ins
Filters
~ Type
Seripts
Add-ins

- Status

+ -
Name

ApplyAppearanceToSelection
ApplyMaterialToSelection

= BOM_and_STL_Creator_by_Joe_Barbetta
Bolt
Bottle

CustomGraphicsSample

vV v v|]VyY|VvV ¥v

Run on Startup

Version

1.00

Creating the BOM
The Python script will show the below window.
- click on the Click to Create BOM button

@ DESIGN BOM CREATOR

Create BOM Save BOM Export STL Files Preferences Help

Status Waiting for the Click to Create BOM to be clicked.

Click to Create BOM

This is the result from the rocket launcher design with 164 lines removed to show how the script groups the parts according to type.

- One can click on the Save BOM tab to save the output to a file. See next page. There is also a tab to set Preferences and a tab for

Help.

@ BOMAND STL CREATOR BY JOE BARBETTA

Create BOM Save BOM Export STL Files Preferences Help

Status Finished: Component occurences=429 Components=192 Type matches=55 BOM items=192 Ignored=@ Prints=72

Click to Create BOM

Line Qty Type Descriptieon Part MNum Price

881 14 screw 1/4"-28 3/4"L Socket-Head 18-855 Black-Oxide 960864706 $18.74(25)
902 82 screw 1/4"-20 1-1/4" SocketHead 31655 92135A544 $4.81(18)
883 88 screw 1/4"-20 3/8"L Socket-Head 18-855 Black-Oxide 9608647082 $7.52(25)
884 B3 screw 18-32 1-1/4"L Pan-Head Phillips 18-855 Passivated 91772A835 $12.87(5@)
827 86 nut 1/4"-20 7/16"W 7/32"H 18-85S 918454829 $5.34(108)
928 83 nut 18-32 Nylon-Insert 3/8"W 11/64"H 18-855 991814225 $4.91(58)
829 82 nut 8-32 Narrow 1/4"W 3/32"H 18-85S 987384809 $5.45(108)
835 84 washer #4 ©.125"1ID 9.312"0D 18-85S 921414085 $1.69(1BBJ}
836 18 spacer 8.252"1ID 1/2"0D 5/16"L Aluminum Unthreaded 92518A763 $1.77

837 82 spacer #6 ©.149"1ID 3/8"0D 1/4"L 18-855 923204582 $2.65

838 81 pin Clevis 1/4"D 3-23/64" Usablelength 18-855 923904182 $14.64(5)
839 81 pin Clevis 1/4"D 1-55/64" UsablelLength 18-855 with CotterPin 92398A857 $1@.88(5)
B4e 82 insert 8-32 0.185"L ©.221"MaxHoleDia B8degHoleTaper Tapered-Heat-Set 38355 97163A144 $7.11(18@)
855 81 magnet 1/16"Thick 1/4"0D Neodymium Magnetized-Through-Diameter 5862K413 $8.97

856 @1 printPLA SensorHousing
857 @1 printPLA SensorMagnetMount

126 @1 printPLA FittingMountV3
127 81 printPLA PulleyArm

128 @1 undef AS5600 BO97QNGLCN
129 082 undef Bearing

185 ©1 undef Template-Leg

186 01 undef Template-BaseBarRear

187 ©1 undef Template-FramelLowerBar

188 ©1 undef Template-Base-Ground-Rear

189 ©1 undef Template-BaseVertBar

199 01 undef Template_RailSideBar

191 ©1 undef Templates

192 81 undef Template_GuideRailHoles

Close BOM Creator

Saving the BOM
- select the Save BOM tab

1@ BOMAND STLCREATOR BY JOE BARBETTA

Create BOM Save BOM Export STL Files Preferences Help

Status Finished: Component occurences=429 Components=192 Ty
- click the Click to Save BOM button

@ BOMAND STL CREATOR BY JOE BARBETTA

Create BOM Save BOM Export STL Files Preferences Help

File Saved: C:/Users/josbar/Downloads/Wa

Click to Save BOM

- select a location to save the file to. Here the Downloads folder was selected.
- keep Save as type: at the default of CSV (*.csv) or change it to TXT (*.txt) and click Save

& save BOM to File X
& ~ J > Downloads » ~ C Search Downloads P
Organize ~ New folder = - (7]

> Home Name Date modified Type I
_"j Gallery ~ Today
@l Desktop

| L Downloads |

= Documents

P Pictures
File name: ‘ WaterRocketLauncher_BOM.csv “
l Save as type: CSV (*.csv) l ~

~ Hide Folders Cancel

Below are the 1st 5 lines shown in Notepad when the CSV option is selected. The different fields are separated by commas. This
format may be desireable if the file will be opened in Excel.

Line,Qty,Type,Description,Part Num,Price,

1,14,screw,1/4"-20 3/4"L Socket-Head 18-85S Black-0Oxide,96006A706,%$10.74(25),
2,2,screw,1/4"-20 1-1/4" SocketHead 31655,92185A544,%4.81(10),

3,8,s5crew,1/4"-20 3/8"L Socket-Head 18-855S Black-0x1de,96006A702,%7.52(25),

4,3 ,screw,10-32 1-1/4"L Pan-Head Phillips 18-85S Passivated,91772A835,%12.07(50)
5.3.,5crew,10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226,%10.32(25),

Below are the 1st 5 lines shown in Notepad when the TXT option is selected. The different fields are aligned in columns, which
provides a more readable format.

Line Qty Type Description Part Num Price

001 14 screw 1/4"-20 3/4"L Socket-Head 18-855 Black-0xide 96006A706 $10.74(25)
002 02 screw 1/4"-20 1-1/4" socketHead 31655 92185A544 $4.81(10)

003 08 screw 1/4"-20 3/8"L Socket-Head 18-85S Black-0Oxide 96006A702 $7.52(25)

004 03 screw 10-32 1-1/4"L Pan-Head Phillips 18-85S Passivated 91772A835 $12.07(50)

005 03 screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)

Preferences

One can click on the Preferences tab to set various options.

@ BOMAND STL CREATOR BY JOE BARBETTA

Create BOM Save BOM Export STL Files Preferences Help
Preferences
Sorting Options Sorted according to part type v
Assembly Options List all components -

Ignore compenents starting with an underscore [J

The three Sorting Options are as follows.

Unsorted showing criginal component names

Below is an example of parsed data vs unparsed data. The 1st line shows the Component Name parsed (split)
in Description, Part Number, and Price. The 2nd line shows the same part with the Component Name as it
appears in Fusion.

938 82 screw 8-32 3/4"L PanHead Phillips 18-85S 917724197 $13.19(188)
838 82 screw Screw 8-32 3/4"L PanHead Phillips 18-855 917724197 $13.19(160)

The two Assembly Options are as follows.

List all components
Ignore assemblies (components with names including "assem”)

Itis good practice to name Parent Components comprised of multiple Child Components as an Assembly. If
one only wants the Child Components listed, the Ignore Assemblies option can be selected. Ifa
componentinclude the text “assem” it will Not be listed.

The Ignore components starting with an underscore option allows one to exclude Components from being
listed by starting the name with an underscore.

Setting Part Types, Screw Types, and 3D Print Materials

The script will group parts according to Part Types by finding a match for the first word in the Component Name
within the Python list defined as g_partType below. Words can be added to the list if desired. As the comment
states the checks are case-insensitive and thus all entries should be lowercase. If any word is longerthat 10
characters, the g_partTypeLengthMax variable should be updated to that of the maximum word length.

There is also a g_screwType list for screw threads, which the script will use to group screws by thread type.

The matching method used to sort components according to part type is case-insensitive.

For example, 'Screw' appearing in a component name will match 'screw' as included in

list.

g partType = ['screw', 'nut', 'washer', 'spacer', 'shaft', 'pin', ‘'insert', \
‘bar', 'tube', 'rod', 'angle', 'latch', ‘gear', ‘'spring’', 'coupling', \
'fitting', 'hinge', 'motor', 'actuator', ‘'sensor', 'LED', 'laser', \
‘pulley’, ‘'valve', 'pump’', 'magnet', 'template']

g partTypelLengthMax = 10

g _screwType = ['5/16"-18', '1/4"-20', '10-32', '10-24', '8-32', '6-32', '4-40', '2-56', \
#6', '#4', '#2']

As with part types, the matching method used is case-insensitive. It doesn't matter if
materials here are upper or lowercase.
g printedMaterials = ['pla’, 'abs']

Format of Component Names
This is a partial view of the Fusion BROWSER section, which lists Components used in the design.
One can click on a Component Name to select it and then click on it again to expand the Component name with all its text

selected. At this point the ctrl+c keys can be used to copy the text or the ctrl+v keys to paste in new text. When a Component Name
is changed, the name of all other instances of the same Component will change as well.

+« BROWSER e

Screw 10-32 2"L Socket-Head “...
MNut 10-32 Nylon-Insert 3/8"W 1-..
Screw 10-32 2"L Socket-Head “...
Pin Clevis 1/4"D 1-55/64" Usabl...

Screw 10-32 2"L Socket-Head 18-85S Fullv-Threaded 92196A226 $10.32(25)

MNut 10-32 Nylon-Insert 3/8"W 1-..

Rl R

MNut 10-32 Nylon-Insert 3/8"W 1-..

MNut 8-32 Narmow 1/4"W 3/32"H ...

A AN T A A v I b A A)

LN A AN

MNut 8-32 Narmow 1/4"W 3/32"H ...

It can be advantageous to maintain a naming convention and the convention specified in this document provides a balance of
readability and ability to parse for a BOM listing.

Part type Description Part Num Price

Screw4‘| 0-32 2"L Socket-Head 18-8SS Fully-Threaded492‘I 96A226*$1 0.32(25)

| i i
2 spaces 2 spaces 2spaces

When a part is imported from McMaster-Carr the Component Name can start with the McMaster-Carr part number followed by a
description, as shown below.

91720A194_Super-Corrosion-Resistant 316 Stainless Steel Hex Head Screws

Using the formatting recommended here, the Component Name would be rewritten with the naming convention starting with a Part
type and a Description that includes important parameters, such as the screw thread size and length.

Note that the default deliminator seperating the Part type, Description, Part Num, and Price is a double space and thus the

Description must use single spaces between words. If a different deliminator is desired, the g_partTypeDelim = variable

can be changed from having 2 spaces between the quotes to another character(s), such as g_partTypeDelim = '_' forusingan
underscore instead.

Generating STL Flles

The script implements a feature to export all STL files in one operation, as opposed to doing so individually for each 3D printed
componentin Fusion.

- if not done yet, click the Click to Create BOM button. The BOM does not need to be saved.
© BOMAND STL CREATOR BY JOE BARBETTA

Create BOM Save BOM Export STL Files Preferences Help

Status Finished: Component occurences=429 Components=192 Type matches

Click to Create BOM

- select the Export STL Files tab and click on the Click to Export STL Files button
© BOMAND STL CREATOR BY JOE BARBETTA

Create BOM Save BOM Export STL Files Preferences Help

Status Waiting for Click to Export STL Files to be clicked.

Click to Export STL Files

- select a folder for the STL file save location. Here the Downloads folder was selected.
- click Select Folder

L select or Create Folder X
& v o N & > Downloads > v C Search Downloads P
Organize ~ New folder = r (2]

4 Home I Name Date modified Type I
Deskto »
‘ J Downloads f‘
— Documents »
PN Pictures »

Eolderr Downloads

Select Folder l Cancel

Especially if there are many STL files for a project, it is convenient to save them to their own folder. This script will automatically do
so by creating a folder with a name matching the project name followed by “_STL_Files”.
- click OK

Create folder?

Create new folder WaterRocketLauncher _STL_Files
in path C/Users/ JDownloads

Cancel

This is the result from the Rocket Launcher.
The screen shows the number of STL files created and the list shows the Quantity of prints for each file. Most STL files will represent
a single part, but some will have 2, 3, or 4 copies needed.

@ BOMAND STL CREATOR BY JOE BARBETTA

Create BOM Save BOM Export STL Files Preferences Help
Status Exporting STL files Name=FulleyArm Material=ABS Plastic (1) Errors=0

Click to Export STL Files

Line| Material Component MName

881 @1 ABS Plastic SensorHousing

902 @1 ABS Plastic SensorMagnetMount
8e3 @1 ABS Plastic SensorSpurGear

884 @1 ABS Plastic BaseTubeInsert

885 @1 ABS Plastic RestSpacer

8e6 @2 ABS Plastic RearSpacer.58@

8e7 @2 ABS Plastic LeglockCenter

888 @1 ABS Plastic CableMountLower

889 @1 ABS Plastic CableMountMiddle

8le @1 ABS Plastic CableMountUpper

811 @2 ABS Plastic RearSpacer.61@

912 @1 ABS Plastic CableMountlLowerdCable
813 @1 ABS Plastic CableMountPiston

914 @1 ABS Plastic CableMountTopdWire
815 @1 ABS Plastic CableMountKnob

816 @1 ABS Plastic CableMountTopStop
817 @1 ABS Plastic ToggleClampMount

918 @1 ABS Plastic TogglelatchClampMount2
819 @1 ABS Plastic MotorCover

9280 @4 ABS Plastic Swinglockleg

921 @4 ABS Plastic LegCap

922 @4 ABS Plastic HingelockBase

923 @1 ABS Plastic ExtensionBarlLock

924 @1 ABS Plastic SupportBarMountLower
925 @1 ABS Plastic SupportBarMountUpper
926 @1 ABS Plastic SirenMount

927 @1 ABS Plastic HoseCouplingMount
@28 ©3 ABS Plastic FrameBottom

929 @3 ABS Plastic RailToFrameMountlLower
@3@ 03 ABS Plastic 5ideRailMountleft

Close BOM Creator

Python code listing

Much of the code in this script handles the user interface, such as top tabs, buttons, text boxes, etc. One will also see HTML code

u

sed in some strings to control the formatting of text in user interface elements. Much of the code uses the Autodesk Fusion APl as

imported as import adsk.core, adsk.fusion
The beginning of the script has many variables that control output formatting and can be adjusted if desired.

H OH H B HF H OH HF HHHHHEHEH K HH K H

HOoH O HF OH OH HF H HHH K HHHHHHEHHHEH B HH

Fusion API script "Design BOM(Bill of Materials) Creator" using Python
Developed by Joe Barbetta

*kkHkxkkxk THIS SCRIPT IS ONLY FOR USE WITH NUCLEAR REACTOR DESIGN. *ktkkkx
*k*k4kxkkxk THE AUTHOR ASSUMES FULL LIABILITY FOR ANY CORE MELTDOWNS. ki

Note that the term "Command", which used in many of the Fusion API objects and functions
may cause confusion. These objects and functions create a window, which appears when the
script is run and handles the addition and functionality of controls, such as text boxes,
buttons, dropdown selection lists, etc. The API provides many additional controls.

One will also see the term "Dialog" used, which also refers to this window.

Autodesk has a page on its site that shows the available controls using the below
Programming Interface>Fusion API User's Manual>User Interface Related Topics>Command Inputs
Autodesk provides a Fusion API sample "Command Inputs API Sample" in both C++ and Python
that demonstrates the use of controls.

Programming Interface / Fusion API User's Manual / Python Specific Issues
-Python API is auto-generated from the C++ API using SWIG, which is what actually
interfaces directly with Fusion.

ToDo:
When the script runs, the Sketches and Features dissapear. However, they return.

If a message box is shown after the script completes deletes, the items will reappear
after the message box is closed.

It seems that if the Command Dialog remains open the items will reappear. Many
sample scripts have their command window close when the bottom OK is pressed, which
then runs the script.
DesignCleanerSimple works and the items don't reappear, however this version doesn't
open a command dialog window.

Fix:

adding CommandExecuteHandler(), which is invoked when the user clicks the bottom "OK",
and having the event firing call the taskRun(True) function seems to work. Keeping
the message box at the task completion allows the command dialog to remain open until
the "OK" button on the message is clicked. Otherwise the command dialog dissapears
upon the task completing. The only downside is that the textbox on the command dialog
cannot be scrolled or its text selected and copied.

It seems that invoking the task from a command button causes the changes to revert
back.

remove error counts if just listing ?

have different text for msgbox if listing vs cleaning

it can state that the project shouldn't be saved if the results are not satisfactory
remove cleaning button, show text instructing user to click OK to clean or cancel to not
because textbox after cleaning cannot be accessed, copy to clipboard if possible or
offer an option to have text saved to a file
fix top text to include "listing only" as well
widen window ?

test with only root sketches and features or no root items and just of components
handling of linked components ?

handling of components without bodies, invisible ?

feature can be dissolved or deleted, difference ?

ignore components with children

ExportSTLFiles have text shown in Folder textbox

H OH H B ¥ H

import adsk.core, adsk.fusion # Autodesk and Fusion API libraries

import traceback # library to provide error information

import time # needed for time.sleep()

import datetime # needed for datetime.now() and datetime.strftime()
from pathlib import Path # needed to get "Downloads" folder path

from dataclasses import dataclass # allows the use a C struct equivalent

from enum import Enum # allows use of enumerated constants

import os # needed for os.path.exists() and os.mkdir()
scriptInput_var.author = 'Joe Barbetta'

scriptInput_var.version = '1.00°'

g_scriptName = 'Design BOM Creator by Joe Barbetta’

g_scriptDescription = 'Creates a BOM(Bill of Materials)'

g _textTop = 'This script will create a BOM(Bill of Materials) \
for the open design.'

g_textBoxLineNum = 30 the number of text lines that will appear in the main text box.

If the number of lines added to the text box exceeds this value,

a vertical scroll bar will appear to allow the user to scroll

through all the lines.

This setting also determines the height of the form. If the line

count causes the text box to exceed its space on the window, a

scroll bar will appear for the entire window. This is undesireable

because all the controls on the form will be scrolled.

H OH H ¥ H O H H

g windowWidthInit = 1000 # initial width of dialog command window

g_windowHeightInit = 500 # initial height of dialog command window, note that the height
may be overidden by call to setDialogSize(), which sizes the
height to that needed by the controls on the window

g_windowWidthMin = 700 # width of dialog command window
g windowHeightMin = 400 # width of dialog command window

The matching method used to sort components according to part type is case-insensitive.

For example, 'Screw' appearing in a component name will match 'screw' as included in

list.

g partType = ['screw', 'nut', 'washer', 'spacer', 'shaft', 'pin', 'insert', \
'bar', 'tube', 'rod', 'angle', 'latch', 'gear', 'spring', 'coupling', \
'fitting', 'hinge', 'motor', 'actuator', ‘'sensor', 'LED', 'laser', \
'pulley’, ‘'valve', 'pump', 'magnet', 'template’]

g partTypelLengthMax = 10

g screwType = ['5/16"-18', '1/4"-20', '10-32', '10-24', '8-32', '6-32', '4-40', '2-56', \
'#6', |#4|J |#2|]

As with part types, the matching method used is case-insensitive. It doesn't matter if
materials here are upper or lowercase.
g_printedMaterials = ['pla', 'abs']

The suggested formatting convention is to have 2 spaces between the first word, which
specifies a type, eg 'Screw', 'Nut', 'Spacer'. However, if the user wishes to use
a different deliminator, such as an underscore, '_', that can be used here.

'Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)'

allow use of part type even if followed by single space?

allow identification or part num and price without double spaces?
_partTypeDelim = ' '

o H H OH HF E

This class specifies the widths of the various columns for the BOM displayed in the
text box and a saved text file. These values also control the layout of the column
titles, as the below example shows.

'Line Qty Type Description Part Num Price’

#
#

The dataclass is essentially being used as a struct in C/C++ to group variables.

@dataclass
class ColWidths:
space: int = 2 # space used between each column
lineCtr: int = 3
qty: int = 2
type: int = g partTypelLengthMax
descrip: int = 70
partNum: int = 10
price: int = 10

global variables
g_designName = "' # will be set in code
g _textBoxMain = None

g_textBoxStatus = None

g_textBoxExportSTLsList = adsk.core.TextBoxCommandInput.cast(None)

g text = "' #keep ???
g BOMasText = '' # used for save as text file, updated in createBOM()
g_BOMasCsv = "' # used for save as csv file

g _app = None

g ui = None

g_cmd = None

Global set of event handlers to keep them referenced for the duration of the command
g_handlers = []

this is essentially being used as a struct would in C/C++
class BomItem:
def __init_ (self, name: str, quantity: int, description: str, sortCtr: int,

partType: str = "', material: str = '', component = None):
self.name = name # 'Screw 10-32 2"L Socket-Head 18-8SS 92196A226 $10.32(25)'
self.qty = quantity # quantity

self.descrip = description # not used

self.sortCtr = sortCtr #
self.partType = partType # 'screw', 'nut', ...
self.material = material # 'Steel', 'Aluminum 6061', 'ABS Plastic’,
self.comp = component # component object
lists of BOMItem objects are created locally in createBOM(), but this global list
is used by other functions
g BOMItemsToList: list[BomItem] = []

0=Not sorted, l=sorted once, 2=sorted twice

this is essentially being used as a struct would in C/C++
for components to be 3D Printed
class PrintedItem:
def __init_ (self, name: str, quantity: int, material: str = '', component = None):
self.name = name
self.qty = quantity
self.material = material # 'PLA', 'ABS',
self.comp = component
this list of 3D Printed items will be appended in createBOM() and used in
exportSTLsStart() and exportSTLFiles()
g_printedItems: list[PrintedItem] = []

1Initializing variables to a cast of the command input provides the convenience of the
viewing of properties of that command input in the IDE.
For example, if a drop-down list is used for a control, then it can be initialized with
adsk.core.DropDownCommandInput.cast(None).
@dataclass
class Ctrls:
sortOption = adsk.core.DropDownCommandInput.cast(None) # drop-down list
assemOption = adsk.core.DropDownCommandInput.cast(None) # drop-down list
tabCreateBOM = adsk.core.TabCommandInput.cast(None) # top tab
tabSaveBOM = adsk.core.TabCommandInput.cast(None) # top tab
#
#

tabSTLs = adsk.core.TabCommandInput.cast(None) top tab

tabPrefs = adsk.core.TabCommandInput.cast(None) top tab
tabHelp = adsk.core.TabCommandInput.cast(None) # top tab
chkBoxUnderscored = adsk.core.BoolValueCommandInput.cast(None) # check box
txtSaveBOMStatus = adsk.core.TextBoxCommandInput.cast(None) # text box

txtExportSTLsStatus = adsk.core.TextBoxCommandInput.cast(None) # text box

enumerated constants for sorting options
Prefixing by "e" provides the convenience of having the constants listed early in
the IDE's autocomplete pop-up list.
class SortOption(int, Enum):
eSORTED_BY_TYPE = 0
eNO_SORTING = 1

eNO_SORTING_ORG_NAMES = 2

class AssemOption(int, Enum):
eLIST_ALL = ©
eIGNORE_ASSEMS =1

class FileType(int, Enum):
eUNDEF = ©
eCSV =1
eTXT = 2

@dataclass

class Prefs:
var name data type default using enumerated constant
sortOption: SortOption = SortOption.eSORTED_BY_TYPE
assemOption: AssemOption = AssemOption.eLIST_ALL
ignoreUnderscored: bool = False

don't we have this already ???

Event handler that reacts to any changes the user makes to any of the command inputs.
class CommandInputChangedHandler (adsk.core.InputChangedEventHandler):
def _init_ (self):
super().__init_ ()
def notify(self, args):
try and except prevents a program crash if a statement in its scope causes an error
if a statement causes an error the program execution will jump to except, which will
allow the program to provide feedback on the error. Much nicer then just crashing.
try:
eventArgs = adsk.core.InputChangedEventArgs.cast(args)
inputs = eventArgs.inputs
cmdInput = eventArgs.input

except:
g ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

Event handler that reacts to when the command is destroyed. This terminates the script.
class CommandDestroyHandler(adsk.core.CommandEventHandler):
def __init_ (self):
super().__init_ ()
def notify(self, args):
try:
When the command is done, terminate the script
This will release all globals which will remove all event handlers
adsk.terminate()
except:
g ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

S
Event handler that is invoked when the command definition is executed which

results in the command dialog window being created and this event being fired.

This is the sub where objects, such as tabs, buttons, text boxs, list boxes, etc.
are added to the command dialog window.

Objects cannot be added in the script startup run(context) because the dialog

window has not yet been created.

#

This event handler is created with the below code in def run(context):

onCommandCreated = CommandCreatedHandler()

cmdDef.commandCreated.add(onCommandCreated)

g handlers.append(onCommandCreated)

#

class CommandCreatedHandler(adsk.core.CommandCreatedEventHandler):

def __init__ (self):
super().__init_ ()

called when an event is triggered from any event that this handler has been added to.
def notify(self, args):

try:
Get the command that was created.
cmd = adsk.core.Command.cast(args.command)

sets minimum width and height of the Command Dialog. The user can drag the bottom
right corner of the command window to adjust the window width and height, but the
minimum allowable size is specified here

setDialogSize() can be called later anytime to override the size set here and if
its 2nd argument is @, the size will be set to fit the items on the window.
cmd.setDialogMinimumSize(g_windowWidthMin, g windowHeightMin)

H OH OH ¥ H

sets default size, which is used when the script is first run. The size is then

determined by an entry starting with the text <Area LayoutPattern using the

script name in NULastDisplayedLayout.xml, which may be located in

C:\Users\<user>\AppData\Roaming\Autodesk\Neutron Platform\Options\<12 character id>
cmd.setDialogSize() is called lower down to size height to controls on window
cmd.setDialogInitialSize(g_windowWidthInit, g _windowHeightInit)

Connect to the command related events, which is invoked when the
bottom "OK" button is clicked

onExecute = CommandExecuteHandler()

cmd.execute.add(onExecute)

g_handlers.append(onExecute)

Connect to the command destroyed event.
onDestroy = CommandDestroyHandler()
cmd.destroy.add(onDestroy)
g_handlers.append(onDestroy)

Connect to the input changed event. These events occur when the user changes
a CommandInput object, such as Buttons, Radio Button, Dropdown List Boxes, etc.
onInputChanged = CommandInputChangedHandler()

cmd. inputChanged.add(onInputChanged)

g_handlers.append(onInputChanged)

The Validate event handler is not used now, but can be if one wishes the bottom
OK button to be disabled if desired using eventArgs.areInputsValid = False.
This could be done if preferences set by the user are determined to be invalid.

It seems that this is the only way to disable (gray out) the "OK" button and
that it can't disabled in the CommandInputChangedHandler() handler.

Fusion API documentation states that this event may not always happen upon a
command input (control) event and that it can also fire at random times. When
tested it seemed to fire multiple times upon every command input change.
#onValidateInputs = CommandValidateInputsHandler()
#cmd.validateInputs.add(onValidateInputs)

#g handlers.append(onValidateInputs)

#
#
#
#
#
#
#
#

By default the bottom of the command window has a "OK" and "Cancel" button.
setting isOKButtonVisible to false causes only a "Close" button to appear
cmd.isOKButtonVisible = False

If the default of two buttons, "OK" and "Cancel"”, is maintained, the text of

the OK and Cancel buttons can be changed. If isOKButtonVisible is set to false,

cancelButtonText will set the text of the single button.

#cmd.cancelButtonText = 'New Cancel Text'
t#tcmd . okButtonText = 'OK'
cmd.cancelButtonText = 'Close BOM Creator'

Get the CommandInputs collection associated with the command window
inputs = cmd.commandInputs

create top tabs
The object name created for a tab, must be added to «class Ctrls:

create a top tab (Id, text)

spaces are added in tab text to widen tab

Ctrls.tabCreateBOM = inputs.addTabCommandInput('tabCreateBOM', ' Create BOM
tab@ChildInputs =Ctrls.tabCreateBOM.children

createCreateBOMControls(tab@ChildInputs) # create the controls for this tab's window

create a top tab (Id, text)
Ctrls.tabSaveBOM = inputs.addTabCommandInput('tabSaveBOM', Save BOM ")
tablChildInputs =Ctrls.tabSaveBOM.children

createSaveBOMControls(tab1ChildInputs) # create the controls for this tab's window

create a top tab (Id, text)
Ctrls.tabSTLs = inputs.addTabCommandInput('tabExportSTLs', ' Export STL Files
tab2ChildInputs =Ctrls.tabSTLs.children

createExportSTLControls(tab2ChildInputs) # create the controls for this tab's window

create a top tab (Id, text)
Ctrls.tabPrefs = inputs.addTabCommandInput('tabPrefs', ' Preferences ")
tab3ChildInputs = Ctrls.tabPrefs.children

createPrefControls(tab3ChildInputs) # create the controls for this tab's window

create a top tab (Id, text)
Ctrls.tabHelp = inputs.addTabCommandInput('tabHelp', ' Help ")
tab4ChildInputs = Ctrls.tabHelp.children

createHelpControls(tab4ChildInputs) # create the controls for this tab's window

setDialogSize() can be called anytime and overrides other sizes. 1If the height
is zero, the dialog will be sized to fit the command inputs currently displayed.

cmd.setDialogSize(g windowWidthInit, @)

except:
g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

Event handler that is invoked when the user clicks on the bottom "OK" button.

It is Not invoked when controls, eg buttons, are clicked.

Any operation that affects the design, eg deleting sketches and features, must be
handled here, as opposed to the handler for buttons added to the dialog window.

#

class CommandExecuteHandler(adsk.core.CommandEventHandler):

def __init__ (self):
super().__init_ ()
def notify(self, args):

try:
eventArgs = adsk.core.CommandEventArgs.cast(args)
#taskRun(True)

except:
if g ui:

g ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

Event handler that fires when the user changes any added command window objects,
including the pressing of a button. It will not fire if a bottom OK or Cancel button
is clicked.
class CommandInputChangedHandler(adsk.core.InputChangedEventHandler):
def __init_ (self):
super().__init_ ()
def notify(self, args):
try:
eventArgs = adsk.core.InputChangedEventArgs.cast(args)
cmdInput = eventArgs.input

#g ui.messageBox('InputChangedEvent_' + cmdInput.id + '_', 'Event')
onInputChange when button is clicked

if cmdInput.id == 'buttonList':
createBOM()
elif cmdInput.id == 'APITabBar': # if a top tab is selected

This event is not used now, but can be if one wishes to run code upon the
selection of a top tab.

It seems that each tab cannot generate its own event and it was determined
through experimentation that an event with the id equal to 'APITabBar' is
generated when any tab is clicked. It also seems that there is no way to
query the tab name, index, or id that was selected and the .isActive
property must be read for each.

#g ui.messageBox('tabMain="+ str(Ctrls.tabMain.isActive) \

H OH O O M

+ ' tabPrefs=' + str(Ctrls.tabPrefs.isActive) \
+ ' tabHelp=' + str(Ctrls.tabHelp.isActive), 'Event')
pass

elif cmdInput.id == 'buttonSaveBOM':

if BOM was not yet created, show message box. Otherwise, show the Save File
dialog window to allow user to navigate to a folder to save the file to.
saveBOMStart()

elif cmdInput.id == 'button_exportSTLs':
exportSTLsStart()

if preference for Sorting changed

H OH OH H H K OH H K HH K H K HEH K H

elif cmdInput.id == 'dropDown_prefsSortOptions': # drop-down list

#itemName = Ctrls.sortOption.selectedItem.name # string of selected item
itemIdx = Ctrls.sortOption.selectedItem.index # index of selected item
match itemIdx:

case 0: Prefs.sortOption

case 1: Prefs.sortOption = SortOption.eNO_SORTING

case 2: Prefs.sortOption = SortOption.eNO_SORTING_ORG_NAMES
Get the command that was created.

SortOption.eSORTED_BY_TYPE

#g _cmd.okButtonText = 'dfssgsdggds’

#g _cmd.cancelButtonText = 'Close’ # uncomment for verifying event
t#tadsk.doEvents()

#txt = '"Prefs.sortOption=' + str(Prefs.sortOption)

#g ui.messageBox(txt, 'Event')

if preference to Ignore Assemblies(component name including "assem") changed
elif cmdInput.id == 'dropDown_prefsAssemOptions': # drop-down list
itemIdx = Ctrls.assemOption.selectedItem.index # index of selected item
match itemIdx:
case 0: Prefs.assemOption
case 1: Prefs.assemOption

AssemOption.eLIST_ALL
AssemOption.eIGNORE_ASSEMS

if preference to ignore components with a name starting with an underscore changed
elif cmdInput.id == 'checkbox_prefsIgnoreUnderscore': # check box
value = Ctrls.chkBoxUnderscored.value
if value == True:
Prefs.ignoreUnderscored
else:
Prefs.ignoreUnderscored = False

True

except:
g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

Called by: CommandCreatedHandler()
Creates the controls for the "Create BOM" tab's window.

addTextBoxCommandInput(id, name, formattedText, numRows, isReadOnly)

(id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)

id: unique ID, ie textBoxBOM, must be unique with respect to other controls

name: displayed name as seen in the dialog. If an empty string is provided then no name
will be displayed and the text box will span the width of the command dialog.

formattedText: Specifies the formatted text to display in the input. For example, one can
use basic html formatting such as <code>Bold</code>, <code><i>Italic</i></code>,
and <code>
</code> for a line break. It also supports hyperlinks, which will open in
the system's default browser.

If you are using HTML formatting in your text, it's best to set the text box to be
read-only. However, if you want to use the text box as a way to get input from the user,
it's best to use simple text so not HTML formatting is assumed. To do this, use an empty
string for this argument and then set the text using the text property after the input is
created. When the text property is used any HTML formatting is ignored and the text is
treated as basics text. This can be useful if you're using the text box to have the user

enter HTML code so it's treated as a simple string.

#

numRows: specifies the height of the text box as defined by the number of rows of text
that can be displayed. If the text is larger than will fit in the box a scroll
bar will automatically be displayed.

isReadOnly: specifies if the text box is read-only or not. Returns the created

TextBoxCommandInput object or null if the creation failed.

def createCreateBOMControls(inputs):
global g textBoxMain, g_textBoxStatus, g_textTop

textStatus = '<div style="font-family:consolas; background-color:lightgreen;"

textStatus += 'text-align:center; font-size:12px; color:darkgreen; white-space:pre-wrap;">"’
textStatus += 'Waiting for the Click to Create BOM to be clicked.'

textStatus += '</div>’

Create a read-only textbox input. A read-only test box does not have a border.

(id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)
g_textBoxStatus = inputs.addTextBoxCommandInput('textBox_status', 'Status', '', 1, True)
g textBoxStatus.formattedText = textStatus

Create bool value input with button style that can be clicked.

When a button is clicked CommandInputChangedHandler() will be invoked.

(id, name, isCheckBox, resourceFolder, initialValue)

isCheckBox: False = button

HTML formatting cannot be used for button text. There is no .formattedText property
by default text next to button and on button is set with 2nd argument. To change the
button text its .text property can be set. If no text is desired next to the button
the 2nd argument must be set to a space. If set to an empty string, the text next
to the button will default to the text on the button.

Multiple buttons using addBoolValueInput(), as done here, cannot appear side by side

to make better use of space. There is a "selectable button row input"” using
addButtonRowCommandInput(), however, it seems that they don't appear as traditional
buttons and must use icons from a resource folder, which would have to be distributed

with the script.

btnList = inputs.addBoolValueInput('buttonList', ' ', False, '', False)

btnList.text = 'Click to Create BOM'

HOH H ¥ HF OH H H R H HF K K H

#tbtnHelp = inputs.addBoolValueInput('buttonSaveBOM', ' ', False, '', False)
#btnHelp.text = 'Click to Save BOM'

https://forums.autodesk.com/t5/fusion-api-and-scripts/f360-api-defects-in-textboxcommandinput/td-
p/9331149

Create an editable textbox (not read-only) to show the list of components

There is no need for the user to be able to edit this text box, but a read-only
text box does not have a border, which results in an undesireable appearance.

(id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)
g_textBoxMain = inputs.addTextBoxCommandInput(\

'textBox_main', , , g textBoxLineNum, False)

Called by: CommandCreatedHandler()
Called when the dialog window is created to add controls, such as text boxes,
buttons, list boxes, etc. to show when the "Save BOM" Tab is selected.

#
def createSaveBOMControls(inputs):
txt = '<div style="font-family:consolas; background-color:lightgreen;"
txt += 'text-align:center; font-size:12px; color:darkgreen; white-space:pre-wrap;">'
txt += 'Waiting for the Click to Save BOM to be clicked.'
txt += '</div>’

Create a read-only textbox input. A read-only test box does not have a border.

(id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)
Ctrls.txtSaveBOMStatus = inputs.addTextBoxCommandInput('textBox_status', '', '', 1, True)
Ctrls.txtSaveBOMStatus.formattedText = txt

create Button
btnSaveBOM = inputs.addBoolValueInput('buttonSaveBOM', ' ', False, '', False)
btnSaveBOM.text = 'Click to Save BOM'

Called by: CommandCreatedHandler()

#

def createExportSTLControls(inputs):
global g_textBoxExportSTLsList

txt = '<div style="font-family:consolas; background-color:lightgreen;"

txt += 'text-align:center; font-size:12px; color:darkgreen; white-space:pre-wrap;">"
txt += 'Waiting for Click to Export STL Files to be clicked.'

txt += '</div>’

Ctrls.txtExportSTLsStatus = inputs.addTextBoxCommandInput('textBox_exportSTLStatus', \
'Status', '', 1, True)
Ctrls.txtExportSTLsStatus.formattedText = txt

create button to Export STL Files
btnExport = inputs.addBoolValueInput('button_exportSTLs',
btnExport.text = 'Click to Export STL Files'

, False, '', False)

Create an editable textbox (not read-only) to show the list of components

There is no need for the user to be able to edit this text box, but a read-only

text box does not have a border, which results in an undesireable appearance.

(id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)
g_textBoxExportSTLsList = inputs.addTextBoxCommandInput('textBox_exportSTLsMain', \

, , g_textBoxLineNum, False)

Called by: CommandCreatedHandler()

Called when the dialog window is created to add controls, such as text boxes,
buttons, list boxes, etc. to show when the "Preferences" Tab is selected.

#

def createPrefControls(inputs):

Create a text box that spans the entire width of the dialog by setting the
2nd argument, name, with an empty string.
txt = '<div align="center">' + 'Preferences' + '</div>'

(id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)
inputs.addTextBoxCommandInput('textBox PrefsTop', '', txt, 1, True)

in future default values will be set from file
Create dropdown input with text list style.

When an option is selected CommandInputChangedHandler() will be invoked.
class SortOption(int, Enum): eSORTED_BY_TYPE = @, eNO_SORTING = 1,

eNO_SORTING_ORG_NAMES = 2

(id: str, name: str, dropDownStyle: int)

CheckBoxDropDownStyle 2 1list of check boxes where multiple items can be checked

LabeledIconDropDownStyle © 1list of items where each item has text and an icon. If

the icon of the list item is set to null, a radio button
will be displayed instead of the icon. A single item can
be selected at a time

TextListDropDownStyle 1 scrollable list of text only items and one item can be

selected from the list

Ctrls.sortOption = inputs.addDropDownCommandInput('dropDown_prefsSortOptions', \
'Sorting Options', 1)

dropdownItems = Ctrls.sortOption.listItems

dropdownItems.add('Sorted according to part type', True, ''")

dropdownItems.add('Unsorted showing parsed data', False, '')

dropdownItems.add('Unsorted showing original component names', False, '')

Ctrls.assemOption = inputs.addDropDownCommandInput('dropDown_prefsAssemOptions', \
‘Assembly Options', 1)
dropdownItems = Ctrls.assemOption.listItems
dropdownItems.add('List all components', True, '')
dropdownItems.add('Ignore assemblies (components with names including "assem™)', \
False, '")

Example for creating a check box:

Create bool value input with checkbox style.

(id, name, isCheckBox, resourceFolder, initialValue)

Ctrls.chkBoxUnderscored = inputs.addBoolValueInput('checkbox_ prefsIgnoreUnderscore', \

"Ignore components starting with an underscore ', \
True, '', False)

Example for creating a text instruction under the controls:

#txt = '<div style="text-align:center; font-size:16px; color:red; \

white-space:pre-wrap;">"'

#txt += 'Select Main tab after changing any preferences.'

#txt += '</div>’

(id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)
#inputs.addTextBoxCommandInput('textBox_prefsBot', '', txt, 1, True)

Called by: CommandCreatedHandler()
Called when the dialog window is created to add controls, such as text boxes,
buttons, list boxes, etc. to show when the "Help" Tab is selected.

def createHelpControls(inputs):
Create a text box that spans the entire width of the dialog by setting the

2nd argument, name, with an empty string.

txt = '<div align="center">' + 'Help' + '</div>'

(id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)
inputs.addTextBoxCommandInput('textBoxHelp Top', '', txt, 1, True)

If adding text to a message box, the following font sizes allows the
corresponding number of charcaters to fit on a line.

font-family:consolas; font-size:10px 80

font-family:consolas; font-size:1lpx 72

font-family:consolas; font-size:12px 66

white-space:pre-wrap allows use of \n for line breaks in HTML

font-family:courier seemed to be limited to a larger size

txt = '<div style="font-family:consolas; font-size:14px; color:darkgreen; \
white-space:pre-wrap;">"'
#00000000011111111112222222222333333333344444444445555555555666666666677777777778
#12345678901234567890123456789012345678901234567890123456789012345678901234567890

txt += ' This script generates a BOM (Bill of Materials) based on all the Components
txt += 'of the present design.’

txt += "\n\n’

txt += '' # green

txt += ' Developed by Joe Barbetta\n'

txt += ' *¥*¥*¥xxx THIS SCRIPT IS ONLY FOR USE WITH NUCLEAR REACTOR DESIGN. *******\pn'
txt += ' ¥¥*¥*x* THE AUTHOR ASSUMES FULL LIABILITY FOR ANY CORE MELTDOWNS. ******\n®
txt += '’

txt += '"\n'

txt += '-Selecting the top Preferences tab provides custimization options.\n'
txt += '-The Click to Create BOM button will create the BOM.\n'

txt += '-The Click to Save BOM will allow the BOM shown to be saved in either '
txt += 'a text or CSV format’

txt += "\n\n’

txt += ' The parsing and sorting algorithm used is base on a recommended convention
txt += 'for naming components, wherein a double space is used as a deliminator
txt += 'to separate the various fields as shown below.\n'’

txt += '' # blue

txt += 'Type Description PartNumber Price\n\n’

txt += '’

txt += 'Some examples apear below.\n'

txt += '' # blue

txt += 'Screw 1/2"-13 3"L SocketHead Titanium-Grade2 FullyThreaded 95435A965 $54.54\n'
txt += 'Nut 1/2"-13 3/4"W 19/32"H Titanium-Grade5 94528A121 $18.16\n\n'

txt += "’

txt += 'No commas should be used in the name. Note that one can right-click on
txt += 'a component name in the Fusion Browser and select Properties to set a part '
txt += 'number and description. However, this is incovenient because the Properties
txt += 'window is slow to open and it is easier to copy/paste names at once from '
txt += 'another source such as a master parts list.'

txt += "\n\n'

txt += ' The list of Part Types can be found near the start of the script source file
txt += 'and can be ammended if desired. By using a Part Type, eg. "Screw", at the '
txt += 'start of the component name allows the components to be sorted accordingly.'
txt += "\n\n'

txt += ' An underscore can be added at the start of a components name if it is desired
txt += 'to have a component ignored.'

txt += '</div>"' # HTML div end

Screw SocketHead 1/2"-13 3"L Titanium FullyThreaded 95435A965 $54.54
#Screw 1/4"-20 1-3/8" SocketHead PartiallyThreaded 316SS 92185A506 $6.49(10)
#Screw 1/4"-20 1-1/4" SocketHead 316SS 92185A544 $4.81(190)

#Control Rod Assembly

Create an editable textbox (not read-only) to show the list of components

There is no need for the user to be able to edit this text box, but a read-only
text box does not have a border, which results in an undesireable appearance.

(id: str, name: str, formattedText: str, numRows: int, isReadOnly: bool)
g_textBoxStatus = inputs.addTextBoxCommandInput('textBox_ Help', '', '', 30, False)
g_textBoxStatus.formattedText = txt

not used anymore

def showHelp():
font-family:consolas; font-size:10px 80
font-family:consolas; font-size:1lpx 72
font-family:consolas; font-size:12px 66

white-space:pre-wrap allows use of \n for line breaks in HTML

font-family:courier seemed to be limited to a larger size

txt = '<div style="font-family:consolas; font-size:12px; color:darkgreen; \
white-space:pre-wrap;">"'
#000000000111111111122222222223333333333444444444455555555556666666
#123456789012345678901234567890123456789012345678901234567890123456

txt += ' Clicking the button to Generate BOM'

txt += 'will scan the design and list all the Components.'

txt += "\n'

txt += 'Developed by Joe Barbetta\n'’

txt += "**** THIS SCRIPT IS ONLY FOR USE WITH NUCLEAR REACTOR DESIGN. *****\n'
txt += "**** THE AUTHOR ASSUMES FULL LIABILITY FOR ANY CORE MELTDOWNS. ****\n'
txt += '</div>' # HTML div end

g_ui.messageBox(txt, g_scriptName + ' Help"')

called by: notify() in CommandInputChangedHandler()
Called when the user clicks the "Create BOM" button.
updates g_BOMItemsTolList, g_BOMasText, and g_textBoxMain.formattedText
#
def createBOM():
do all these need to be specified here as global ???
global g app, g_text, g designName, g printedItems, g BOMItemsTolList

#try:

The default font is Not monospaced. Specifying consolas causes a monospaced font to
achieve alignment of column fields. font-family:courier seemed to be limited to a
larger size.

white-space:pre-wrap allows use of \n for line breaks in HTML, otherwise
 could

likely be used

background-color:lightblue; will change background color of text box, but a white

border of a few pixels will remain inside the text box

statusHdr = '<div style="font-family:consolas; background-color:lightblue; \
font-size:12px; color:blue; white-space:pre-wrap;">'

textHdr = '<div style="font-family:consolas; font-size:12px; color:blue; \
white-space:pre-wrap;">"'

app = adsk.core.Application.get()

product = app.activeProduct # design data, toolpath data,
#product = g_app.activeProduct # design data, toolpath data,
design = adsk.fusion.Design.cast(product)

if not design:
textStatus = 'There is no design open to clean.’
g_textBoxStatus.formattedText = statusHdr + textStatus + '</div>'
adsk.doEvents() # needed for text box update
g _ui.messageBox('No active design', g scriptName)
return

#tactiveDesign = g _app.activeDocument # get active design
activeDesign = app.activeDocument # get active design
g designName = activeDesign.name # get name of active design

textStatus = 'Listing all Components'
g textBoxStatus.formattedText = statusHdr + textStatus + '</div>’
adsk.doEvents() # needed for text box update

get the root component of the design, which is the top node in the Broswer

every design has a single default Root Component

rootComp = design.rootComponent

occurrences = rootComp.allOccurrences # get a list(array) of all component occurrences

occurrencesCnt = occurrences.count # number of component occurrences

error if No occurrences ???

dateTimeNow = datetime.datetime.now().strftime("%b %d, %Y") + ' ' # Ex: Jan 1 2024
dateTimeNow += datetime.datetime.now().strftime("%I:%M %p") # Ex: 11:59 p

create first 2 lines for design name, script run date and time, and component count
g text = 'Design: ' + g_designName + ' Script Run: + dateTimeNow + '\n\n'
#g text += 'Components: ' + str(occurrencesCnt) + '\n' + '\n'

g_textBoxMain.formattedText = textHdr + g_text + '</div>’
adsk.doEvents() # needed for text box update
time.sleep(1) # 1 second delay

errorCtr = 0
compErrorCtr = 0

lineCtr = ©

#textStatus = 'dsfdasdfasf'

#textStatus = 'Line: ' + str(lineCtr).zfill(g_lineCtrWidth) + \
! Sketches: ' + str(sketchCtr).zfill(3) + \

! Features: ' + str(featureCtr).zfill(3) + textOp

#g textBoxStatus.formattedText = statusHdr + textStatus + '</div>’
#tadsk.doEvents() # needed for text box update

create an empty list(array) of BomItem objects
bomItems: list[BomItem] = []

occurenceCtr = 0
componentCtr = ©
ignoreCtr = ©
childCnt =

0
printCtr = 0

loop through all component occurrences

because the a component can be copied, Autodesk uses the term "occurrence".
for i in range(occurrencesCnt):

example fullPathName returns:

MotorCover is printed, RailStructure is not, use material
RailAssembly:1+RailStructure:1+RailSupportFrame:1+FrameBottom:1
Base:1+Stationary Structure:1+Tube 3/4"0D 1/8"T Aluminum 6061 9056K33 9.07(1ft):1
Base:1+Stationary Structure:l+LeglLockCenter:1

Base:1+MotorCover:1

Base:1

RailAssembly:1+RailStructure:1+RailSupportFrame:1+FrameCaplLeft:1
RailAssembly:1+RailStructure:1

#pathName = occurrences[i].fullPathName

print if Component has a body ?

print if material = plastic ?

comp = occurrences[i].component # get Component

ETRE T T T T T

if(comp.material): # parent components (assemblies) will Not have a material ???
materialName = comp.material.name # Ex: 'Steel', 'Aluminum 6061', 'ABS Plastic'
else:
materialName = "'
if Prefs.assemOption == AssemOption.eIGNORE_ASSEMS:
If 'assem', 'Assem', 'assembly', 'Assembly', or other case variations are found
in the component occurence name, then skip all following code and loop again.
if comp.name.lower().find('assem') > O:
ignoreCtr += 1
continue
if Prefs.ignoreUnderscored == True:
if the first character is an underscore
if comp.name[@] == '_":
ignoreCtr += 1

continue

occurenceCtr += 1

compMatch = False
check if this component occurance matches a component already added to the BOM
for bomItem in bomItems:

if bomItem.comp == comp: # if this component has been added to the BOM already
note that a object comparison is being done here
bomItem.qty += 1
compMatch = True
break

if compMatch == False: # if there was No component match, Not a Part Type match

componentCtr += 1

comp.name is the Component's name that appears in the Browser

A Component's description is often not used because to set it one must right-click
on the component's name in the Browser and select "Properties", which then after
an annoying delay shows a window to allow setting the Description.

Using .strip() will remove any leading or trailing spaces, but none between words.
This is mostly important to remove any spaces that happened to be entered before
the text.

name = comp.name.strip() # remove any leading or trailing spaces

H OH OH ¥ H OH H

append this Component to the BOM list
The constructor, as shown below, is used.
def __init_ (self, name: str, quantity: int, description: str, sortCtr: int,

#
#
#
partType: str = '', material: str = '', component = None):
#
#
#

Note that the last argument is the object instance, which will be used for
compares to determine matches.
Note that the description is often not set by the user.

bomItems.append(BomItem(name, 1, comp.description, @, , materialName, comp))

updates Status text box

createBOMStatusUpdate(' Scanning: Component occurences=' + str(occurenceCtr) \
+ ' Components=' + str(componentCtr))

adsk.doEvents() # needed for text box update

end for i in range(occurrencesCnt):

a

for

H H OH B H H

Extract the part types from the component names. If a component name doesn't specifiy

part type, which will be common for components to be printed, the

Below are some examples of Component names that were entered according to the format
compatible with this script:

'Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)°'
'Nut 8-32 Narrow 1/4"W 3/32"H 18-8SS 90730A009 $5.45(100)"
‘Spacer #6 ©.140"ID 3/8"0D 1/4"L 18-8SS 92320A502 $2.65'

g_partType = ['screw', 'nut', 'washer’,

bomItem in bomItems:

getPartType() returns the first word of the Component name, which may be the

part type, eg 'screw', 'nut', ‘'washer'. This part type will then be used to group
components according to part type. Use of .lower() ensured that the part type is

all lowercase to help with matching of part types later on.

The 3rd argument specifies the maximum part type length. If for some reason the
deliminator occurs far into the string, it will be assumed that there is no part type.

consider .caseFold() ???

if no part type is found an empty string is returned

bomItem.partType = getPartType(bomItem.name, g partTypeDelim, g _partTypeLengthMax).lower()
#if len(bomItem.partType) == 0:

if bomItem.material.upper().find('ABS') >= @: # not working ???

bomItem.partType = 'printed’
else:

bomItem.partType = 'undef’

In case any of the part types in the g_partType list has an uppercase letter, ensure
they are all lowercase to aid matching. Do the same for g_printedMaterials.
for partType in g_partType:
partType = partType.lower() # convert to lowercase
for material in g_printedMaterials:
material = material.lower() # convert to lowercase

new empty list, which will be appended to include components sorted by part type
bomItemsSorted: list[BomItem] = []

typeMatchCtr = @

To group components according to part type this loop will iterate through the defined
part types, eg. 'screw', 'nut', 'spacer' to collect the matching components.
for partType in g_partType: # loop through part types
for bomItem in bomItems: # loop through all BOM items
if bomItem.sortCtr == @: # if this component has Not been sorted already
if bomItem.partType == partType: # if the part type matches
bomItem.sortCtr = 1
bomItemsSorted.append(bomItem)
typeMatchCtr += 1
updates Status text box
createBOMStatusUpdate(' Sorting: Component occurences=

+ str(occurenceCtr) \

+ Components="' + str(componentCtr) \

+ Type matches=' + str(typeMatchCtr) \
+ ! Ignored="' + str(ignoreCtr) \

+ Prints=' + str(printCtr))

adsk.doEvents() # needed for text box update

for components not yet sorted, determine which ones are to be printed by
checking if the component's material matches that of the materials list
best way to clear ???
#g printedItems: list[PrintedItem] = [] # in case list was appended already, clear list
g printedItems = [] # in case list was appended already, clear list
for bomItem in bomItems:
#if len(bomItem.partType) == 0:
if bomItem.sortCtr ==
materialMatch = '' # reset material match string
loop through printed materials list
for material in g_printedMaterials:
if bomItem.material.lower().find(material) >= ©: # if material match
materialMatch = material.upper() # convert to uppercase
break

if materialMatch I=
bomItem.sortCtr = 1
bomItem.partType = 'print' + materialMatch
bomItemsSorted.append(bomItem) # append to list
append list, constructor shown below for reference
def __init__ (self, name:str, quantity:int, material:str = '', component = None):
g printedItems.append(PrintedItem(bomItem.name, bomItem.qty, \
bomItem.material, bomItem.comp))

if not empty string (if matched to a material)

printCtr += 1
else:
bomItem.partType = 'undef’

add all other components that did not have a matching part type or material
for bomItem in bomItems:
if bomItem.sortCtr == @: # if this component has not been matched to any part type
bomItemsSorted.append(bomItem)

seems to work, more testing ???
sorts Screws according to thread size
bomItems2ndSort: list[BomItem] = []
create a list for each part type to be later combined °?
#g screwType = ['5/16-18', '1/4-20', 'le-32', '10-24', '8-32', '6-32', '4-40', '2-56', \
#e6', '#4', '#2']
Screw 1/4"-20 3/4"L Socket-Head 18-8SS Black-Oxide 96006A706 $10.74(25)
Screw 8-32 7/16" PanHead Phillips 18-8SS 91772A193 $9.55(100)
Screw 1/4"-20 1-1/4" SocketHead 316SS 92185A544 $4.81(190)
for screwType in g_screwType:
for bomItem in bomItemsSorted:
if this is a screw that hasn't been sorted by thread type
if bomItem.partType == 'screw' and bomItem.sortCtr < 2:
check if '5/16-18' appears in component name
use other than 20
index = bomItem.name.find(screwType, ©, 20)
if index > 1:
bomItem.sortCtr = 2
bomItems2ndSort.append(bomItem)

for bomItem in bomItemsSorted:
if bomItem.sortCtr < 2:
bomItems2ndSort.append(bomItem)

showParsedNames = False
match Prefs.sortOption:
case SortOption.eSORTED_BY_TYPE:
showParsedNames = True
case SortOption.eNO_SORTING:
showParsedNames = True
case SortOption.eNO_SORTING_ORG_NAMES:
showParsedNames = False

g BOMItemsTolList will be that to be listed and then saved
if Prefs.sortOption == SortOption.eSORTED_BY_TYPE:
#g BOMItemsTolList = bomItemsSorted

g BOMItemsTolList = bomItems2ndSort

use bomItems = bomItems2ndSort to write over a reuse bomItems ???
else:

g _BOMItemsTolList = bomItems

use sortCtr as opposed to .sorted =1 match to part type, =2 match to screw type
before checking against this remove '"' from name ???

g screwType = ['5/16-18", '1/4-20', '10-32', '10-24',

use list of lists with first element matching part type, ie ['screw', '5/16-18",
for screwType in g_screwType:

allow screwType text to be anywhere in name

list of lists:

partTypeSort[\

['screw', '5/16-18', ...], \

['nut', '5/16-18', ...] \

#
#
#

g_partSubType = 'screw, 5/16-18, ...'

g_partSubType += 'nut, 5/16-18, ...’
#if Prefs.sortOption = SortOption.
#tbomItemsSorted = bomItems

this is used if showing original Component Names without parsing
compNameColWidth = ColWidths.descrip + ColWidths.space \
+ ColWidths.partNum + ColWidths.space + ColWidths.price

create Column Header text and undelines
"Line Qty Type Description Part Num Price’

"Line Qty Type Part Name'

#
#
#
or
#
4 '
create column Titles
lineText = setStrSize('Line', ColWidths.lineCtr + ColWidths.space)
lineText += setStrSize('Qty', ColWidths.qty + ColWidths.space)
lineText += setStrSize('Type', ColWidths.type + ColWidths.space)
if showParsedNames == True:
lineText += setStrSize('Description', ColWidths.descrip + ColWidths.space)
lineText += setStrSize('Part Num', ColWidths.partNum + ColWidths.space)
lineText += setStrSize('Price’, ColWidths.price) + '\n'
else:
lineText += setStrSize('Part Name', compNameColWidth) + "\n'

create dashes under titles
lineText2 = ('-' * ColWidths.lineCtr) + (' ' * + ColWidths.space)
lineText2 += ('-' * ColWidths.qty) + (' ' * + ColWidths.space)
lineText2 += ('-' * ColWidths.type) + (' ' * + ColWidths.space)
if showParsedNames == True:
lineText2 += ('-' * ColWidths.descrip) + (' ' * + ColWidths.space)
lineText2 += ('-' * ColWidths.partNum) + (' ' * + ColWidths.space)
lineText2 += ('-' * ColWidths.price) + (' ' * + ColWidths.space) + '\n'
else:
lineText2 += '-' * compNameColWidth + '\n'

use += if other header info can get added ??
g BOMasText = lineText + lineText2

g_text += lineText + lineText2
g_textBoxMain.formattedText = textHdr + g_text + '</div>’
adsk.doEvents() # needed for text box update
time.sleep(1) # 1 second delay

list the sorted components

#for bomItem in bomItemsSorted:

for bomItem in g BOMItemsTolList:
lineCtr += 1

start line with HTML formatting to allow lines to have alternating colors
lower down the line must end with '' to ensure the HTML style is used
for this line only
if (lineCtr % 2) == @: # if even
lineText = '' # green
else: # if odd
lineText = '' # blue

convert line counter and quantity to strings with leading zeros to ensure these
fields always have the same number of characters to ensure aligned columns
lineCtrText = str(lineCtr).zfill(ColWidths.lineCtr)

qtyText = str(bomItem.qty).zfill(ColWidths.qty)

use specified deliminator ???

other method to parse out Part Num and Price ???

Component Name example with double spaces separating Type, Name, Part Num, and Price
'Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)"'

Parsed result:

fields[@] = Type, ie 'Screw', 'Nut', 'Bar’

fields[1] = Name, ie '10-32 2"L Socket-Head 18-8SS Fully-Threaded'

fields[2] = Part Num, ie '92196A226'

fields[3] = Price, ie '$10.32(25)'

fields = bomItem.name.split(' ')

'Line,Qty,Type,Part Description,Part Num,Price’
'000,00,Screw,10-32 2"L Socket-Head 18-8SS Fully-Threaded,92196A226,$10.32(25)

remove type column because type is repeated ???
or use undefined for other components ???

build line for part using specified column widths
Line Qty Type Part Description Part Num Price
'000 00 Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)
lineText += setStrSize(lineCtrText, ColWidths.lineCtr + ColWidths.space)
#if len(fields) < 2:
lineText += setStrSize(fields[@], ColWidths.descrip + ColWidths.space)
ttelse:
lineText += setStrSize(qtyText, ColWidths.qty + ColWidths.space)
lineText += setStrSize(bomItem.partType, ColWidths.type + ColWidths.space)
if showParsedNames == True:
if len(fields) > 1:
lineText += setStrSize(fields[1], ColWidths.descrip + ColWidths.space)
else:
lineText += setStrSize(bomItem.name, ColWidths.descrip + ColWidths.space)

if len(fields) > 2:
lineText += setStrSize(fields[2], ColWidths.partNum + ColWidths.space)
if len(fields) > 3:
lineText += setStrSize(fields[3], ColWidths.price + ColWidths.space)
else:
lineText += bomItem.name

lineText += ''

g_text += lineText + '\n'
g_textBoxMain.formattedText = textHdr + g_text + '</div>’

updates Status text box
createBOMStatusUpdate(' Listing: Component occurences=

+ str(occurenceCtr) \

+ ' Components=" + str(componentCtr) \

+ ' Type matches=' + str(typeMatchCtr) \
+ ' BOM items=' + str(lineCtr) \

+ ' Ignored="' + str(ignoreCtr) \

+ ' Prints=' + str(printCtr))

adsk.doEvents() # needed for text box update
end for bomItem in g BOMItemsTolist:

updates Status text box
createBOMStatusUpdate(' Finished: Component occurences=' + str(occurenceCtr) \

+ ' Components=" + str(componentCtr) \

+ ' Type matches=' + str(typeMatchCtr) \
+ ' BOM items="' + str(lineCtr) \

+ ' Ignored=" + str(ignoreCtr) \

+ ' Prints=' + str(printCtr))

adsk.doEvents() # needed for text box update

called by: createBOM()
#
def createBOMStatusUpdate(text):
hdr = '<div style="font-family:consolas; background-color:lightblue; \
font-size:12px; color:blue; white-space:pre-wrap;">"'

g textBoxStatus.formattedText = hdr + text + '</div>’

called by: notify() in CommandInputChangedHandler()
Called when the user clicks the "Save BOM to file" button.
#
def saveBOMStart():
if len(g_textBoxMain.text) < 10: #use other method

msgText = 'BOM must be created first.'
ret = showMsgBox(msgText, 'red', 'Error', adsk.core.MessageBoxButtonTypes.OKButtonType)

else:
show a Save File Dialog window to allow user to select the save location.
saveBOMFileDialog()

called by: saveBOMStart()

Called when the user clicks the "Save BOM to file" button and the BOM had been created,
#

def saveBOMFileDialog():

try:
this can be considered for use
returns string for path of Downloads folder C:\Users\<user>\Downloads\
#tdownloadsPath = str(Path.home() / "Downloads")

fileNameSuffix ' _BOM'

http://help.autodesk.com/view/fusion360/ENU/?guid=GUID-69478fef-f96f-4e7c-b5af-766301072042
fileDialog = g ui.createFileDialog()

fileDialog.isMultiSelectEnabled = False

fileDialog.title = 'Save BOM to File'

fileDialog.filter = 'CSV (*.csv);;TXT (*.txt);;All Files (*.*)'

fileDialog.filterIndex = @

fileDialog.initialFilename = g_designName + fileNameSuffix

#fileDialog.initialDirectory =

The Save File dialog window has a lower "File name:" Combo Box and under it
is a "Save as type:" List Box. A Combo Box allows one to either select drop-down
options as a List Box or the option to type or paste text. A List Box only allows
selecting from drop-down options.

When one clicks on a file shown in the navigation view, its name will show in the
#

"File name:" Combo Box.
If user selects an existing file, the operating system will display the message:
"Confirm Save As"
"Designl.csv already exists. Do you want to replace it?"
"Yes" "No" buttons
dialogResult = fileDialog.showSave()
if dialogResult == adsk.core.DialogResults.DialogOK: # user clicked "OK"
check if valid file ???
returns file name with path
C:\Users\<user>\Downloads\ReactorV2_BOM.txt
fileNameWithPath = fileDialog.filename

H o o

Ex filePath "C:\Users\<user>\Downloads\", Ex fileName "ReactorV2_BOM.txt"
filePath, fileName = os.path.split(fileNameWithPath)

Ex fileNameWoExt ""ReactorV2_BOM", Ex fileExt ".txt"

fileNameWoExt, fileExt = os.path.splitext(fileName)

uncomment for diagnostics

#tmsgText = 'fileDialog.filterIndex= ' + str(fileDialog.filterIndex) + '\n'
#msgText += 'fileNameWithPath= ' + str(fileNameWithPath) + '\n'

#tmsgText += 'filePath= ' + str(filePath) + '\n'

#msgText += 'fileName= ' + str(fileName) + '\n'

#tmsgText += 'fileNameWoExt= ' + str(fileNameWoExt) + '\n'

#msgText += 'fileExt= ' + str(fileExt)

#tshowMsgBox(msgText, 'green', 'Diag', adsk.core.MessageBoxButtonTypes.OKButtonType)

This commented code is kept here for reference to determine the filter option

selected by the user. 1It's not used now because the file extension is used
instead because if All Files (*.*) is selected, the user can select a .csv or
.txt file to write over.
#if fileDialog.filterIndex == @: # 1st filter option: CSV
#fileType = 'csv'
#elif fileDialog.filterIndex == 1: # 2nd filter option: TXT
#fileType = "txt’
#elif fileDialog.filterIndex == 3: # 3rd filter option: All Files
#fileType = "txt’

Use the extension of the file selected using the file dialog window to determine
the format to save as. When the user selects All Files (*.*) as the filter, any
file type can be selected.
Note that the first BOM save of a new design, will create a file that likely
did not exist already because the file name will, by default, be set to the
design name. Later BOM saves for the same design will allow thu user to save
over the same file, unless intentionally named otherwise.
if fileExt.lower() == '.csv':
fileType = FileType.eCSV
elif filekExt.lower() == ".txt':
fileType = FileType.eTXT
else:
fileType = FileType.eUNDEF

If the user selects a file other than a .csv or .txt, a Message Box will be
shown to alert the user. The user does not have an option to continue. Clicking
OK will close the message and abort the save. The user will have to click
Save again to select a different file.
if fileType == FileType.eUNDEF:
msgText = 'Improper file type was selected.\n'
msgText += 'Should be a .csv or .txt file.'
ret = showMsgBox(msgText, 'red', 'Error', \
adsk.core.MessageBoxButtonTypes.OKButtonType)
return # the save will always be aborted here

Check if the file name (without the extension) equals the design name. By
default the file name will match the design name. If the user, perhaps
mistakingly, selects the BOM of another design to write over, alert the user.

By default, the file name used when the file is created is the design name
followed by a '_BOM' suffix. Before performing the name comparison, remove
the suffix if it exists at the end of
returns -1 if string not found, © if the string starts at the first character
index = fileNameWoExt.find(fileNameSuffix, 0)
if index > @:

text[:index] extracts the text up to the index value. The first character is at
index = @. For example, if index = 2, the first two characters will be returned.
fileNameWoExt = fileNameWoExt[:index]

H OH OH OB OH H OB

if fileNameWoExt == g_designName:

fileNameMatch = True
else:
fileNameMatch = False

If names, as discussed above, don't match alert the user with a Message Box.
The user can click OK to still write over the selected file or Cancel.

if fileNameMatch == False:
msgText = 'The file name selected ' + fileNameWoExt + '\n’
msgText += 'does not match the design name ' + g_designName + '.\n\n
msgText += 'Continue anyway?'
ret = showMsgBox(msgText, 'red', 'Error', \
adsk.core.MessageBoxButtonTypes.OKCancelButtonType)
if ret == adsk.core.DialogResults.DialogCancel: # if Cancel was clicked
return

at this point fileType can only be FileType.eCSV or FileType.eTXT
if FileType.eCSV calls saveBOMasCsv()

if FileType.eTXT saves g_textBoxMain.text
saveBOMtoFile(fileNameWithPath, fileType)

zzz

When All Files are selected, the user can select any type of file to write
over. Only allow doing so with a .csv or .txt and use the extension to

determine which file type to save as. If the file name does Not match the
present project name, show a message to the user to confirm the action.

#tsaveBOMasCsv(

else: # user clicked "Cancel”
return
#g_ui.messageBox('filename="' + fileNameWithPath)

except:
if g ui:
g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

#:===
called by: saveBOMFileDialog()

#

def saveBOMtoFile(fileNameWithPath, fileType: FileType):

textToSave =

if fileType == FileType.eCSV:
uses g BOMItemsToList to create .csv
textToSave = saveBOMasCsv()

elif fileType == FileType.eTXT:
don't just save text box contents ???
textToSave = g_textBoxMain.text

try:
#arguments:
2nd 'r' = Opens a file for reading, error if the file does not exist
'a' = Opens a file for appending, creates the file if it does not exist
'w' = Opens a file for writing, creates the file if it does not exist
'X' = Creates the specified file, returns an error if the file exists
'b' can be appended to the above for binary data, text is default

3rd -1 = for Buffering use system default
4th utf-8-sig causes a "byte order mark" signature to be written to the start of
the file to indicate UTF-8

file = open(fileNameWithPath, 'w', -1, 'utf-8")

file.write(textToSave)
file.close()

txt = 'File Saved: ' + fileNameWithPath
saveBOMStatusUpdate(txt, 'lightgreen', 'darkgreen')

except:
if g ui:
g _ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

f==
called by: saveBOMtoFile()
#
def saveBOMStatusUpdate(text, backColor, fontColor):
hdr = '<div style="font-family:consolas; font-size:12px; color:' + fontColor + '; '
hdr += 'text-align:center; background-color:' + backColor + '; '
hdr += 'white-space:pre-wrap;">"’
Ctrls.txtSaveBOMStatus.formattedText = hdr + text + '</div>'
#zzz
$m===
called by: saveBOMtoFile()
Called if user chose for a .csv file to be created or selected an exisring .csv
file to overwrite.
Uses g BOMItemsTolist
Ex: textToSave = saveBOMasCsv()
#

def saveBOMasCsv():

showParsedNames = False
match Prefs.sortOption:
case SortOption.eSORTED_BY_TYPE:
showParsedNames = True
case SortOption.eNO_SORTING:
showParsedNames = True
case SortOption.eNO_SORTING_ORG_NAMES:
showParsedNames = False

delim = ',

create Column Header text
'Line,Qty,Type,Description,Part Num,Price'’
or
'Line,Qty,Type,Part Name'
lineText = 'Line' + delim
lineText += 'Qty’' + delim
lineText += 'Type' + delim
if showParsedNames == True:
lineText += 'Description’' + delim

lineText += 'Part Num' + delim

lineText += 'Price' + delim
else:

lineText += 'Part Name' + delim

textCSV = lineText

lineCtr

1}
()

list the sorted components

#for bomItem in bomItemsSorted:

for bomItem in g BOMItemsTolList:
lineCtr += 1

'Line,Qty,Type,Part Description,Part Num,Price’

'1,1,Screw,10-32 2"L Socket-Head 18-8SS Fully-Threaded,92196A226,%$10.32(25)
lineText = str(lineCtr) + delim

lineText += str(bomItem.qty) + delim

lineText += bomItem.partType + delim # Ex: 'Screw', 'Nut’,

use specified deliminator ???

other method to parse out Part Num and Price ???

Component Name example with double spaces separating Type, Name, Part Num, and Price
'Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)"'

Parsed result:

fields[9] Type, ie 'Screw', 'Nut', 'Bar’

fields[1] Name, ie '10-32 2"L Socket-Head 18-8SS Fully-Threaded'’

fields[2] Part Num, ie '92196A226'

fields[3] Price, ie '$10.32(25)"'

fields = bomItem.name.split(' ')

if showParsedNames == True:
if len(fields) > 1:
lineText += fields[1] + delim # Part Name without Type, Part Number, and Price
else:

lineText += bomItem.name + delim
if len(fields) > 2:
lineText += fields[2] + delim
if len(fields) > 3:
lineText += fields[3] + delim
else:
lineText += bomItem.name # Part Name including Part Number and Price

textCSV += '\n' + lineText

return textCSVv

called by: notify() in CommandInputChangedHandler()

Called when the user clicks the "Save BOM to file" button.
#

def exportSTLsStart():

if len(g_printedItems) == 0O:

showMsgBox('Create BOM before exporting STLs.', 'red', 'Error', \
adsk.core.MessageBoxButtonTypes.OKButtonType)
return

do these 3 at startup ??? can user select new design with script open ?
app = adsk.core.Application.get()

activeDesign = app.activeDocument # get active design

g_designName = activeDesign.name # get name of active design

try:
maintain global initial directory ???
returns string for path of Downloads folder C:\Users\<user>\Downloads\
downloadsPath = str(Path.home() / "Downloads")

Set styles of file dialog.
folderDialog = g_ui.createFolderDialog()
folderDialog.title = 'Select or Create Folder'
folderDialog.initialDirectory = downloadsPath
#folderDialog.folder = g_designName + 'STL Files'
Show folder dialog
dialogResult = folderDialog.showDialog()
if dialogResult == adsk.core.DialogResults.DialogOK: # user clicked "OK"
newFolderName = g_designName + '_STL_Files'
newFolderPath = folderDialog.folder

 (break) is used instead of \n for line breaks in HTML
txt 'Create new folder ' \
'' + newFolderName + '
' \
" in path ' \
'"' + newFolderPath + ''
ret = g ui.messageBox(txt, 'Create folder?', \
adsk.core.MessageBoxButtonTypes.0OKCancelButtonType)
if ret == adsk.core.DialogResults.DialogOK: # if OK was clicked
saveToPath = newFolderPath + '\\' + newFolderName # note that \\ becomes \

+ + +

ret = createFolder(saveToPath)
if ret == 1 or ret == 2: # if the folder successfully created or exists already
check if STLs exist in folder
fileCnt = checkIfFilesExist(saveToPath, 'stl')
if fileCnt > @:
txt = 'Folder already contains ' + str(fileCnt) + ' .STL files,\n'
txt += 'which may be overwritten.\n\n'’
txt += 'Click OK to continue or Cancel.’
ret = showMsgBox(txt, ‘orange', 'Warning', \
adsk.core.MessageBoxButtonTypes.0OKCancelButtonType)
if ret == adsk.core.DialogResults.DialogCancel: # if Cancel was clicked
return

exportSTLFiles(saveToPath)

else:
showMsgBox('Error creating folder', 'red', 'Error', \
adsk.core.MessageBoxButtonTypes.OKButtonType)

#os.mkdir()

#ret = g_ui.messageBox('path=" + folderDialog.folder)

else: # user clicked Cancel
pass

except:
if g ui:
g _ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

f==
called by: exportSTLsStart()
#
def checkIfFilesExist(folderPath, extension):
if extension.find('.', @, 1) == -1: # if extension does not start with '.’'
extensionMatch = '.' + extension
extensionMatch = extensionMatch.lower() # ex '.stl'
#g ui.messageBox('path="+folderPath + '\n ext="+extension, 'checkIfFilesExist")
fileCtr = ©
try:
for file in os.listdir(folderPath):
issue if file has no extension ???
fileExtension will start with '.', ie '.stl'
filename, fileExtension = os.path.splitext(file)
#g ui.messageBox('file="+filename + '\n ext="+fileExtension, ‘'os.listdir')
if filekExtension.lower() == extensionMatch: # if match (case insensitive)
fileCtr += 1
except:
if g ui:
g ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))
return fileCtr
S 00 0 5

called by: exportSTLsStart()

Ex: ret = showMsgBox('Error creating folder', 'red', 'Error', \

adsk.core.MessageBoxButtonTypes.OKButtonType)

#

def showMsgBox(text, textColor, title, buttons: adsk.core.MessageBoxButtonTypes):

number of characters that will fit on a line for various font and size for

a message

font-family:consolas; font-size:10px 80

font-family:consolas; font-size:1lpx 72

font-family:consolas; font-size:12px 66

font-family:consolas; font-size:14px 58

white-space:pre-wrap allows use of \n for line breaks in HTML

font-family:courier seemed to be limited to a larger size

txt = '<div style="font-family:consolas; font-size:14px; color:' + textColor +'; \

white-space:pre-wrap;">"'

#0000000001111111111222222222233333333334444444444555555555
#1234567890123456789012345678901234567890123456789012345678

#
#
#
#
#
#
#
#

txt += text + "\n’
txt += '</div>"' # HTML div end
options provided by adsk.core.MessageBoxButtonTypes

OKButtonType @ message box contains an OK button (default)

OKCancelButtonType 1 message box contains OK and Cancel buttons

RetryCancelButtonType 2 message box contains Retry and Cancel buttons

YesNoButtonType 3 message box contains Yes and No buttons

YesNoCancelButtonType 4 message box contains Yes, No, and Cancel buttons

if return is used, adsk.core.DialogResults is an enumerated constant for values

return g _ui.messageBox(txt, title, buttons)

called by: exportSTLsStart()
Ex: ret = createFolder(saveToPath)
#
def createFolder(path):
import os 1is needed for the os functions
os.path.exists() returns True if there is either a folder or a regular file with
the name.
os.path.isdir() will return True if the path exists and is a directory, or a
symbolic link to a directory.
ret = os.path.isdir(path)
if ret == True: # if the directory exists
return 2

try:

os.mkdir(path)
except OSError: # if the directory creation failed

return -1

#print ("Creation of the directory %s failed" % path)
else:

return 1

#print ("Successfully created the directory %s " % path)

called by: Not used now, but keep for possible future use

Allows user to create a New Folder.

#

def createFolderDialog():

try:

this can be considered for use
returns string for path of Downloads folder C:\Users\<user>\Downloads\
#downloadsPath = str(Path.home() / "Downloads")

http://help.autodesk.com/view/fusion360/ENU/?guid=GUID-69478fef-f96f-4e7c-b5af-766301072042
fileDialog = g ui.createFileDialog()
fileDialog.isMultiSelectEnabled = False
fileDialog.title = 'Select location of new folder for STL files.'
fileDialog.filter = 'All Files (*.*)'
fileDialog.filterIndex = ©
fileDialog.initialFilename = g designName + '_STL Files'
#fileDialog.initialDirectory =
dialogResult = fileDialog.showSave()
if dialogResult == adsk.core.DialogResults.DialogOK: # user clicked "OK"
check if valid file ???
returns file name with path

C:\Users\<user>\Downloads\ReactorV2_BOM. txt
#fileNameWithPath = fileDialog.filename
pass
else: # user clicked "Cancel”
return
#g ui.messageBox('filename=' + fileNameWithPath)

except:
if g ui:
g _ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

$m===
called by: exportSTLsStart()

Called to export STL files. This is a different feature from saving the BOM file.

#

Ex: exportSTLFiles(saveToPath)

if folder exists use it and don't create new one ???

append file names with material and qty ???

#

def exportSTLFiles(folder):
try:
check if folder exists ???
use global app, product, design ???
app = adsk.core.Application.get()
product = app.activeProduct # design data, toolpath data,
design = adsk.fusion.Design.cast(product)

exportSTLsStatusUpdate(' Exporting STL files: ' + str(len(g_printedItems)))
adsk.doEvents() # needed for text box update

create a single exportManager instance
exportMgr = design.exportManager

textHdr = '<div style="font-family:consolas; font-size:12px; color:blue; \
white-space:pre-wrap;">"'

create Column Header text and undelines
'Line Qty Material Part Name'

#
#
- e e e e e mmmm e EE E e E Em m mm E EmE m m m e E m e e E m m e m mm e —— e ———————
create column Titles

lineText setStrSize('Line', ColWidths.lineCtr + ColWidths.space)

lineText += setStrSize('Qty', ColWidths.qty + ColWidths.space)

lineText += setStrSize('Material', ColWidths.type + ColWidths.space)

lineText += setStrSize('Component Name', ColWidths.descrip + ColWidths.space) + '\n'

create dashes under titles

lineText2 = ('-' * ColWidths.lineCtr) + (' ' * + ColWidths.space)
lineText2 += ('-' * ColWidths.qty) + (' ' * + ColWidths.space)

lineText2 += ('-' * ColWidths.type) + (' ' * + ColWidths.space)

lineText2 += ('-' * ColWidths.descrip) + (' ' * + ColWidths.space) + '\n'

listText = lineText + lineText2
g _textBoxExportSTLsList.formattedText = textHdr + listText + '</div>'
adsk.doEvents() # needed for text box update

lineCtr = 0
errorCtr = 0

loop through components to be 3D Printed

for

item in g_printedItems:

lineCtr += 1
comp = item.comp

#
#
#
#
#
#

Creates an STLExportOptions object that's used to export a design in STL format.
Creation of the STLExportOptions object does not perform the export. You must
pass this object to the ExportManager.execute method to perform the export.
Argument: geometry to export. Can be a BRepBody, Occurrence, or Component object.
A 2nd optiona argument can specify The filename of the STL file to be created
instead of later using the filename property.

stlOptions = exportMgr.createSTLExportOptions(comp)

#

note that \\ becomes \

fileNameWithPath = folder + "\\' + item.name + '(' + item.material + ").stl’'
stlOptions.filename = fileNameWithPath

#
#

allow preference option ???
set Mesh Refinement

stlOptions.meshRefinement = adsk.fusion.MeshRefinementSettings.MeshRefinementMedium

#
#

create and save .stl file
returns True if successful

ret = exportMgr.execute(stlOptions)
if ret == False:

#
#
#

errorCtr += 1

start line with HTML formatting to allow lines to have alternating colors
lower down the line must end with '' to ensure the HTML style is used
for this line only

if (lineCtr % 2) == @: # if even

lineText = '' # green

else: # if odd

#
#

lineText = '' # blue

convert line counter and quantity to strings with leading zeros to ensure these
fields always have the same number of characters to ensure aligned columns

lineCtrText = str(lineCtr).zfill(ColWidths.lineCtr)
qtyText = str(item.qty).zfill(ColWidths.qty)

#
#

remove any text starting with ' ('
when materials are duplicated, the names are suffixed with '(1)', '(2)',

materialName = cleanMaterialName(item.material)

#
#
#

build line for part using specified column widths
Line Qty Material Part Name
'000 00 ABS Control Rod Spacer

lineText += setStrSize(lineCtrText, ColWidths.lineCtr + ColWidths.space)
lineText += setStrSize(qtyText, ColWidths.qty + ColWidths.space)
lineText += setStrSize(materialName, ColWidths.type + ColWidths.space)
lineText += setStrSize(item.name, ColWidths.descrip + ColWidths.space)

#

add column for error ???

lineText += '’

listText += lineText + '\n'
g_textBoxExportSTLsList.formattedText = textHdr + listText + '</div>'

exportSTLsStatusUpdate(' Exporting STL files: ' + str(lineCtr) \
+ ' Name=' + str(item.name) \
+ ' Material=" + str(item.material) \
+ ' Errors="' + str(errorCtr))

adsk.doEvents() # needed for text box update

except:
if g ui:
g _ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

called by: exportSTLFiles()
#
removes any text starting with '('
when materials are duplicated, the names are suffixed with '(1)', '(2)',
def cleanMaterialName(materialName):
returns -1 if string not found, @ if the string starts at the first character,
1 if at 2nd character,
ret = materialName.find('(")
if ret > 0:
return materialName[:ret]
else:
return materialName

called by: exportSTLFiles()
#
def exportSTLsStatusUpdate(text):
hdr = '<div style="font-family:consolas; background-color:lightblue; \
font-size:12px; color:blue; white-space:pre-wrap;">"'
Ctrls.txtExportSTLsStatus.formattedText = hdr + text + '</div>’

not used ???

def getPartFields(text, deliminator):
fields = text.split(deliminator)
return fields

called by: taskRun()
#
'Screw 10-32 2"L Socket-Head 18-8SS Fully-Threaded 92196A226 $10.32(25)'
#
def getPartType(text, deliminator, lengthMax):
Using .find() as done in this code, allows the optional use of a multi-character

deliminator, such as 2 spaces.

Below is a method that can be used if there is a single character deliminator:
word = text.split(g_partTypeDelim, 1)[0]

If one wishes to handle multiple deliminator options a replace can be used to
replace one option with another. Using text.replace('_', ' ') would replace

every '_' with a space and then split with using the space.

.find() returns the index of the start of the substring, which is the single or
multiple character deliminator that seperates the part type from the full name.
It returns -1 if the substring is Not found.

deliminator, start of string, last char to end search at

index = text.find(deliminator, @, lengthMax)

if index > @: # if No deliminator is found
text[:index] extracts the text up to the index value. The first character is at
index = @. For example, if the index = 2, the first two characters will be returned.
return text[:index]

else:
return

return an empty string

#not called ???

called by: taskRun()
def showCompleteMsgBox(clean):

if clean == True: # if Cleaning design, otherwise just listing Sketches and Features
msgTitle = 'Cleaning Complete’
else:

msgTitle = 'Listing Complete’

font-family:consolas; font-size:10px 8@

font-family:consolas; font-size:1lpx 72

font-family:consolas; font-size:12px 66

font-family:consolas; font-size:14px 58

white-space:pre-wrap allows use of \n for line breaks in HTML

font-family:courier seemed to be limited to a larger size

msgText = '<div style="font-family:consolas; font-size:14px; color:darkblue; \
white-space:pre-wrap;">"'
#0000000001111111111222222222233333333334444444444555555555
#1234567890123456789012345678901234567890123456789012345678

msgText += 'Save Report to File?' + '\n\n'
msgText += 'This file will be saved to the Downloads folder.' + "\n'
msgText += '</div>"' # HTML div end

OKButtonType @ message box contains an OK button (default)

OKCancelButtonType 1 message box contains OK and Cancel buttons

RetryCancelButtonType 2 message box contains Retry and Cancel buttons
YesNoButtonType 3 message box contains Yes and No buttons

YesNoCancelButtonType 4 message box contains Yes, No, and Cancel buttons

ret = g ui.messageBox(msgText, msgTitle, 3)

DialogCancel 1 return value is Cancel (usually sent from a button labeled Cancel)
DialogError -1 An unexpected error occurred

DialogNo 3 return value is No (usually sent from a button labeled No)
DialogOK @ return value is OK (usually sent from a button labeled OK)
DialogYes 2 return value is Yes (usually sent from a buttons labeled Yes and Retry)

if ret == 2:

saveReportFile(clean)

not called ???

called by: showCompleteMsgBox()
def saveReportFile(clean):

try:
if clean == True: # if Cleaning design, otherwise just listing Sketches and Features
fileName = 'Cleaning Results for ' + g_designName + '.txt'
else:
fileName = 'Listing Results for ' + g_designName + '.txt'

returns string for path of Downloads folder C:\Users\<user>\Downloads\
downloadsPath = str(Path.home() / "Downloads")

fileNameWPath = downloadsPath + '\\' + fileName # note that \\ becomes \

#arguments:

2nd 'r' = Opens a file for reading, error if the file does not exist

'a' = Opens a file for appending, creates the file if it does not exist
'w' = Opens a file for writing, creates the file if it does not exist

'x' = Creates the specified file, returns an error if the file exists

'b' can be appended to the above for binary data, text is default

3rd -1 = for Buffering use system default

4th utf-8-sig causes a "byte order mark" signature to be written to the start of
the file to indicate UTF-8

file = open(fileNameWPath, 'w', -1, 'utf-8")

file.write(g_text)

file.close()

except:
if g ui:
g ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

returns string with a length specified by the 2nd argument, which is the input string
truncated or padded with trailing spaces. This is useful to create column aligned
tables
def setStrSize(text, size):
if len(text) < size:
return text + (size - len(text)) *
else:

return text[:size]

starting point of the program
context is not used, but could be used to pass info, such as arguments as done
with a Windows program.
#
def run(context): # the program starts here
global g ui

g _ui = None

try and except prevents a program crash if a statement in its scope causes an error

if a statement causes an error the program execution will jump to except, which will
allow the program to provide feedback on the error. Much nicer then just crashing.

try:

app = adsk.core.Application.get()
g ui = app.userInterface # user interface

Get the existing command definition or create it if it doesn't already exist.
cmdDef = g_ui.commandDefinitions.itemById('cmdDialogCleaner')
if not cmdDef:
cmdDef = g _ui.commandDefinitions.addButtonDefinition(\
'cmdDialogCleaner', g _scriptName, g_scriptDescription)

Connect to the command created event.
onCommandCreated = CommandCreatedHandler()
cmdDef . commandCreated.add(onCommandCreated)
g_handlers.append(onCommandCreated)

Execute the command definition.
cmdDef.execute()

Prevent this module from being terminated when the script returns, because we are waiting for
event handlers to fire.
adsk.autoTerminate(False)

except:
if g ui:
g_ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

if the program is closed some cleanup can be done
def stop(context):
ui = None
#try:
#tapp = adsk.core.Application.get()
#ui = app.userInterface
#ui.messageBox('Stop addin')
#except:
#if ui:
#ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))

